
Sétif 1 University 2nd semester (year 2023/24)
Faculty of Sciences Machine Structures 2 course
Common Core Mathematics and Computer Science Kara Abdelaziz professor

Chapter 1 : Combinational Circuit

1. Introduction

2. Définition

➔ Digital electronic circuit which internally performs binary processing from inputs to
outputs.

➔ Possesses n inputs and m discrete digital binary outputs (0/1).

➔ Its specification is based on Boolean Functions and/or Truth Tables.

1

3. Logic Gates (L.G.)

➔ Elementary component (indivisible).

➔ Basic physical (real) element of digital electronics.

➔ They are assembled in composition to form digital circuits.

➔ They represent an elementary operation of Boolean logic (and, or, not...).
The different gates are:

Gate Symbol Truth table Description

AND

A B S

0 0 0

0 1 0

1 0 0

1 1 1

It is the logic and : S = A·B

OR

A B S

0 0 0

0 1 1

1 0 1

1 1 1

It is the logic or : S = A+B

NOT

A S

0 1

1 0

It is the logic not : S = A

NAND

A B S

0 0 1

0 1 1

1 0 1

1 1 0

It is the logic not-and : S = A·B

2

NOR

A B S

0 0 1

0 1 0

1 0 0

1 1 0

It is the logic not-or : S = A+B

XOR

A B S

0 0 0

0 1 1

1 0 1

1 1 0

It is the logic exclusive-or : S = A ⊕B

XNOR

A B S

0 0 1

0 1 0

1 0 0

1 1 1

It is the logic not-exclusive-or :
S = A ⊕B = A ⊗B

buffer

A S

0 0

1 1

It is the buffer, a gate that doesn't do
any logical operation, it is used to
reduce the speed of the signal in
some situations :
S = A

tristate
buffer

A C S

0 0 Z

1 0 Z

0 1 0

1 1 1

It is the tristate buffer, used to
produce the Z logic signal :

 {if (C=0)⇒S=Z
if (C=1)⇒S=A

(A,B are inputs. S is the output. C for the command)

Fan-out : Characteristic of a gate which indicates the maximum number that its
output S can provide for the inputs of the next gate.

Example : fan-out = 3
S cannot provide for more than 3 outputs.

3

Fan-in : Gate characteristic that indicates the number of inputs of a gate.

Example : The AND3 gate is an AND gate with 3 inputs.

Gate Symbol Truth table

AND3

A B C S

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Note : The fan-out can be appended as a number at the end of a gate name (eg: AND3),
and omitted if it is the default number (number 2) of inputs (eg: AND = AND2).

4. Rules to design a combinational circuit

a combinatorial circuit is described formally as a graph, made up of a set of
elements, interconnected by oriented links.

4

A combinational circuit must respect the following 5 rules to be a valid combinational circuit

• The element can only be either a combinational circuit or a logic gate. This rule
highlights the hierarchical modular nature of complex circuits.

• The link is an electrical wire carrying 0 or 5 Volts (logic 0 or 1). There are three
types; inputs, outputs, and internal links.

• For each input combination, there is only one unique output combination,
mathematically speaking it is a function (or application). This is also the origin of the
name combinational.

• The input of an element cannot receive its signal from more than a single previous
output, otherwise forming a short circuit (or contention).

• A signal's path cannot pass through an element more than once. In other words,
there is no cycle (loop) in the circuit.

If one of the rules is not respected, the circuit is not a valid combinational circuit.

5. Combinational Circuit specification

The specification (operational description) of a combinational circuit is ensured by
two formal tools which are; Boolean Functions and/or the Truth Table.

Example :

F1(A,B) = A·B + A·B
F2(A,B) = A·B + A·B

Solution :

A B F1 F2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

5

6. Conventional steps to design a combinational circuit

Conventionally 5 steps are followed to design a combinatorial circuit :

• Global Scheme

• Truth Table

• Boolean Functions

• Karnaugh table or Algebraic simplification

• Schematic

Example :

The combinational circuit of a 7-segment display is a circuit used for the control of a
7-segment display, it allows the display of a single digit in 7 segments as illustrated in the
diagram below. It receives in its input a binary integer number encoded using 4 bits
enclosed inside the interval [0,9] that represent the digit to display. And in its output it
produces the combination of segments that displays the digit in the decimal format.

Step 1 : Global Scheme

6

Step 2 : Truth Table

E3 E2 E1 E0 A B C D E F G

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1 0 1 0 0 0 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Step 3 : Canonical Disjunctive Functions

A(E3,E2,E1,E0) = E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 +
 E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0

Step 4 : Karnaugh Table

E3E2

E1E0 00 01 11 10

00 1 0 0 1

01 0 1 0 1

11 1 1 0 0

10 1 1 0 0

A(E3,E2,E1,E0) = E3·E2·E0 + E3·E2·E0 + E3·E2·E1 + E3·E1

7

Step 5 : Schematic

Note 1: This method is called 5-step method, or 2-stage circuit, because in the diagram
there are 2 stages (AND stage and OR stage).

Note 2:_It is also possible to work with the CCF (Conjunctive Canonical Form) on steps 3,
4 and 5, it is more optimal if the number of 0s is less than the 1s in the output (column A),
otherwise DCF is more optimal. The optimality here is in the reduction of the terms
number.

Note 3: The main mechanisms for reducing a circuit are; to choose between DCF or CCF
in relation to the number of 0s and 1s in the output column, The Karnaugh Table or
Algebraic Simplification, and finally the don't care outputs.

7. The don't care outputs

In some situations, the output may be undefined in the specification of a circuit. For
example in the 7-segment display the numbers 10 to 15 are not defined and their outputs
could be indifferently put to 0 or 1 without altering the proper working of the circuit, and this
characteristic could be used as an advantage to further reduce the number of gates. In the
Karnaugh Table, undefined outputs could be taken either 0 or 1 depending on the situation
which allows the circuit to be reduced the most.

8

Step 2 : Truth Table

E3 E2 E1 E0 A B C D E F G

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1 0 1 0 - - - - - - -

1 0 1 1 - - - - - - -

1 1 0 0 - - - - - - -

1 1 0 1 - - - - - - -

1 1 1 0 - - - - - - -

1 1 1 1 - - - - - - -

Step 3 : Canonical Disjunctive Functions

A(E3,E2,E1,E0) = E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 +
 E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0 + E3·E2·E1·E0

Step 4 : Karnaugh Table

E3E2

E1E0 00 01 11 10

00 1 0 - 1

01 0 1 - 1

11 1 1 - -

10 1 1 - -

A(E3,E2,E1,E0) = E1 + E3 + E2·E0 + E2· E0

9

Step 5 : Schematic

Note 1: The reduction in the number of gates is very important. It makes the reducution in
the cost of the circuit, make it faster, minimize the electrical consumption, and simplify the
physical implementation.

Note 2: The don't care dashes should not be confused with reduction dashes, the first are
put in the output side of the Truth Table, and the second are placed in the input side.

Reduction dash : Unlike don't care outputs, the reduction dash has no implication
in the circuit specification. It is just used to reduce the size of the Truth Table, in the
case where multiple adjacent lines share the same output. A reduction dash simply
means, whatever value of the input variable, the output remains the same.

Example :

A B C S1 S2

0 0 0 1 0 A B C S1 S2

0 0 1 1 0 0 - - 1 0

0 1 0 1 0 1 0 0 0 0

0 1 1 1 0 1 0 1 0 1

1 0 0 0 0 1 1 0 0 0

1 0 1 0 1 1 1 1 1 0

1 1 0 0 0

1 1 1 1 0

10

8. The most commun combinational circuits

In this section we will describe the most common combinational circuits.

8.1. Multiplexer/Demultiplexer

➔ The Multiplexer is a combinational circuit which has 2n inputs and n selectors with a
single output.

➔ It works by selecting one single input chosen by selectors (S1 and S0 in the
example) and pass it to the output.

➔ The input to pass is the binary value encoded in the selectors, the other inputs are
blocked.

➔ The Multiplexer is often designated as the Hardware if or switch instruction.

In the following diagram we have a multiplexer with 4 inputs, 2 selectors and 1 output.

➔ The demultiplexer does the opposite operation.

➔ It has a single input and 2n outputs and n selectors.

➔ Il fait traverser l'entrée vers la sortie désignée par les sélecteurs.

➔ It makes cross the input value to the output chosen by the selectors.

The Multiplexer and Demultiplexer have a primordial role in the implementation of
communication buses between different hardware blocks, and the management and
control of the flow of information in complex hardware systems.

Note 1:_The trapezoid symbol and the Mux/Demux nomenclature are commonly used in
Hardware design literature to designate the Multiplexer/Demultiplexer.

Note 2: The number 4 at the end of the name Mux and Demux indicates the number of
inputs in the Multiplexer and outputs in the Demultiplexer.

11

8.2. Encoder/Decoder

➔ The Encoder is a circuit with 2n inputs and n outputs.

➔ The Encoder must receive only one input at 1, the others must be at 0. The output
then returns the binary encoded value of the position of the input at 1.

➔ In the diagram below, if E2 is 1 and the others 0, the output sould be 10 (2 in
binary). Because the 1 is at the entrance 2.

On the diagram n = 2 for the Encoder and for the Decoder.

➔ The Decoder is the opposite, it has n inputs and 2n outputs.

➔ The operation is also the opposite, it receives an input encoded in binary, and
activates only one output, the one in position with the value encoded as input.

➔ On the diagram, if E1=1 and E0=0 (2 in binary), S2 is at 1 and the others at 0.

Note 1: The two numbers in the Encoder and Decoder nomenclature (4 and 2 in the
diagram) are the input-output numbers of the two components.

Note 2: The decoder is an essential circuit for implementing memories (RAM/ROM).

8.3. Priority controller

➔ The Priority Controller is a combinational circuit that has n inputs and n outputs.

➔ Its role is to build a priority order on the inputs, and to prioritize the higher priority.

➔ It outputs only one output, the one that coincides with the highest priority among the
inputs.

➔ In the example of the diagram, the priority scale is from E1 going down to E4. So if
for example E2 and E4 are active (set to 1), the output is S2, because E2 has upper
priority than E4 on the priority scale.

12

In the following diagram the Priority Controller is with n = 4. So 4 inputs, and 4 outputs.

Note : This circuit can be found in an interrupt manager for instance.

8.4. Parity Controller

➔ The Parity Controller is a combinational circuit with n inputs and 1 output.

➔ It allows the recognitin of the of inputs parity. This means distinguishing whether the
number of 1s in the inputs is even or odd.

➔ If the number of 1s in the inputs is odd it outputs 1. Otherwise, if it is even it outputs
0.

➔ In the example, the Parity Checker has 4 inputs, if the input is for example 1110 it
will output 1 (odd) because the number of 1s is 3.

On the diagram we have a Parity Controller with 4 inputs and one output.

Note : The Parity Controller is often used to check the integrity of data in transmission
networks.

8.5. Adder/Substrator

➔ The Adder is a combinatorial circuit used to do the binary addition between 2
numbers A and B on n bits, and gives as output the sum on n bits, plus the carry bit.

➔ The Subtractor is a combinatorial circuit which subtracts between 2 numbers A and
B on n bits, and outputs the result on n bits, plus the borrow bit.

13

On the diagram we have a 4-bit Adder with 2 possible symbols and a 4-bit Subtractor with
2 symbols as well.

Note 1: The second representation of the Adder and the Subtractor, the one of the
trapezoid with a notch to separate the 2 inputs, is very common in the Hardware design
literature, it is generally used to symbolize arithmetic operations and often also the ALU.

Note 2: The slash line (/) on the inputs and the output with the label 4 bits, indicates that
for instance the input A is made up of 4 different inputs (A3, A2, A1, A0). This
representation is used to simplify the diagramming of buses containing several wires.

Note 3: The carry bit is the same as the one remaining last in binary addition or a borrow
bit in subtraction operations. It is often called the 5th bit in 4 bit binary operation.

Note 4: There are different implementations of the Adder and the Subtractor depending on
the encoding of the values operated. This means that there are different versions of the
adder for Unsigned, Sign-Magnitude, 1's Complement, and 2's Complement encoding.

Note 5: You will most often find the circuits that do arithmetic operations in calculators and
ALUs.

14

8.6. Multiplier/Divider

➔ The Multiplier is a combinatorial circuit that performs the binary multiplication
between 2 Unsigned Integers A and B on n bits, and gives as output the result of
the multiplication on 2n bits.

➔ The output of the Multiplier must be 2n bits wide, to contains the result of the
multiplication.

➔ The Divider is a combinatorial circuit that divides 2 Unsigned Integers A and B over
n bits, and produces a result on 2 outputs with n bits each. The 2 outputs are the
Quotient and the Remainder.

The diagram represents a 4-bit Multiplier with its 2 possible symbols and a 4-bit Divider
with its 2 symbols as well.

Note 1: For a purpose of simplicity, the Multiplier and the Divider use Unsigned Integer
encoding, most often a fairly simple complementary circuit is added to implement signed
encoding.

Note 2: The Divider here does the integer division, with the quotient and the remainder.
Real division is done on real numbers (IEEE754 floating point encoding).

Note 3: There are also another implementation of Multiplier and Divider using sequential
circuits. Each version has it own advantages and disadvantages.

15

8.7. Comparator

➔ The Comparator is a combinational circuit used to compaire between 2 numbers A
and B on n bits. It produces 3 outputs; Greater, Equal, and Inferior.

➔ Whatever the 2 numbers, there are only one possible active output, Greater, Equal,
or Less.

The diagram represents a Comparator with 4 bits on the inputs. And the three comparison
outputs G = Greater, E = Equal, L = Lesser.

Note 1: The Comparator provides the operations >, =, and <. To obtain ≥, ≤ and ≠, logic
gates could respectively be added to the outputs as follow; G+E, L+E et E.

Note 2: The Comparator like the Adder and the Subtractor depends of the encoding used
for the compared numbers (Unsigned, Sign-Magnitude, 1's Complement, 2's
Complement).

Note 3: To reduce the number of logic gates and also the Hardware, it is not uncommon to
find micro-architectures without a comparator. It is implemented indirectly using a
subtractor. The result of the subtraction is tested if it is positive, negative, or equal to zero,
and interpreted as a comparison between 2 numbers.

8.8. Shifter

➔ The Shifter is a combinational circuit that shifts the input bits to the left or right. The
number of bits shifted is expressed binary by the Amount input. Amount is generally
n bits when input is 2n bits.

➔ If for instance the input in the diagram below is 11001100, shifting left with an
Amount = 3 (011) would give the output 01100000. All bits are shifted left and the 3
rightmost bits are lost.

➔ In this situation we took the example of a Shifter on the left, the Shifter on the right
shifts in the opposite direction, from left to right.

➔ The Shift Amount is encoded in binary, here 3 bits to represent an offset of 0 to 7
digit (bit). 7 being the maximum value to shift all 8 inputs.

16

The diagram on the left represents a Right-Shifter with 8 input bits, and 8 output bits, with
an Amount of 3 bits. On the right is another representation of the Shifter, taking the form of
a parallelogram.

Note 1: The left shift is interpreted mathematically as a multiplication of the input value by
2mnt, and the right shift is a division by 2mnt (mnt is Amount).

Note 2: There are several variations of the Shifter; Logical Shifter, Arithmetic Shifter, and
Rotational Shifter. The Shifter studied here is a so-called Logical Shifter, in which the
empty bits after shifting are always filled with 0.

Note 3: There are also an implementation of a Shifter based on Sequential Circuits. each
implementation has its advantages and disadvantages.

8.9. Sign Extender

➔ The Sign Extender is a combinational circuit which gets a signed value on n bits as
input. And will extend this value on m bits (such that m>n) as output while
preserving the sign of the value.

➔ For example in the diagram below, the input value 3 = 0011 on 4 bits is extended to
3 = 00000011 on 8 bits. Or -3 = 1101 to -3 = 11111101 in 2's complement endoding.

The diagram represents a Sign Extender with 4 bits as inputs, and 8 bits as outputs, in 2's
complement encoding.

Note 1: The Sign Extender depends of the signed integers encoding (Sign-Magnitude, 1's
Complement, 2's Complement).
Note 2: Extenders are often symbolized by the trapezoid geometric shape.

17

8.10. ALU (Arithmetic and Logic Unit)

➔ The ALU is the unit inside a processor that performs arithmetic and logic operations.

➔ The ALU is a combinational circuit that performs a Function (or Operation) on its
two inputs A and B, and produces the result on the output S. The function is chosen
by the input F.

➔ The table on the right gives the operations code in F, to select which function to
perform by the ALU.

➔ If for instance in 2's complement we give A the value 3 = 00000011 and B the value
-2 = 11111110, and we choose the function 2 on F (010) which makes A + B, the
result in S would be S = 00000001.

The diagram represents an 8-bit ALU using 2's complement encoding, with 2 inputs A and
B on 8 bits, an output S on 8 bits, and the function F on 3 bits.

F2 F1 F0 Functions

0 0 0 A and B

0 0 1 A or B

0 1 0 A + B

0 1 1 not used

1 0 0 A and B

1 0 1 A or B

1 1 0 A - B

1 1 1 SLT

Note 1: Many combinational circuits impose the choice of encoding (Unsigned, Sign-
Magnitude, 1's Complement, 2's Complement), but almost all modern Hardware uses 2's
Complement. Therefore from this point on, this course only deals with 2's complement
encoding.

Note 2: The ALU shown in the diagram is taken directly from the book Digital Design and
Computer Architecture (page: 249), it was used for the partial creation of the MIPS
processor.

Note 3: It is possible to find the CU (Control Unit) implemented using a combinational
circuit, on simple single-cycle type of processors like Arduino or PIC and AVR
Microcontrollers. But in most cases, the CU is implemented using an advanced
programmable sequential circuit.

18

9. Universal NAND and NOR gates

➔ Universal NAND and NOR gates are gates that can implement any logical Boolean
operation (and, or, not...).

➔ Any circuit can be converted to a circuit with either NAND or NOR gates.

➔ The implementation on silicon is favorable to NAND and NOR gates, because they
require fewer transistors than other gates and electrically they are more suitable.

➔ A large number of integrated circuits ICs (Processors, GPU, Shipset,...etc.) are
implemented using NAND or NOR on silicon.

Example 1:

Example 2: Convert the following circuit gate by gate into NOR gates circuit.

19

The bubble pushing technique :

➔ It is a visual graphical technique based on De Morgane's theorem, it allows to
transform any circuit into a circuit based on NAND or NOR gates with the minimum
number of gates.

➔ This technique is illustrated in the diagram below A·B = A+B et A·B = A+B.

➔ Visually, for the first formula A·B = A+B, we could imagine that if when we push the
bubble at the output inwards, it comes out on all the inputs of the gate, and the gate
transforms from AND to OR.

➔ And the second A·B = A+B, if we pushed all the bubbles at the inputs, a bubble
comes out at the output of the gate, and the gate transforms from AND to OR.

➔ Bubbles are NOTs. 2 NOT on the same wire cancel each other out according to the
axiom A = A.

➔ The global rule is that if we push the bubbles on all the inputs, a bubble will come
out at the output and the gate transforms from AND to OR or vice versa.

➔ And the other way, if we push the output bubble inside the gate, a bubble will
emerge on each input and the gate transforms from AND to OR or vice versa.

Example :

20

A·B

A

B

A

B

A

B

A

B

A+B

A·B A+B

A·B = A+B

A·B = A+B

equivalent

equivalent

10. The Z value and its use in Buses

➔ The Z value or Z state is the third logical state counting state 0 and state 1.

➔ The Z value is sometimes called a Floating value or electronically a High
Impedance value.

➔ A signal (wire) with a Z value means that the wire is not connected, neither at 0 nor
at 1.

➔ The only gate that can generate the Z value is the Tristate Buffer. If the Tristate
Buffer is set to 0 on its control input it disconnects the output wire.

➔ Electrically, if a wire is not connected its voltage is floating between different
voltages. Experimentally it is a totally random voltage.

➔ The purpose of the Z value is a mean to get around the 4 th rule of the definition of
combinational circuits, such that several outputs can share the same wire.

➔ Its main use is to share a common wire for all outputs, in order to transport
information. The shared wire is usually called Bus.

The following diagram represents a Bus used for data transmission between 4 circuits.
The transmission is managed by the Bus Arbiter.

➔ Circuits could be combinational or sequential.

➔ The Arbitrator is the circuit responsible for managing the transfer of data between
circuits on the Bus.

➔ Each output of a circuit is controlled by a Tristate Buffer, itself controlled by the

21

Arbiter so that only a single output can access the Bus.

➔ All circuits receive the Bus signal on their inputs, but the signal can only enter the
circuit if the circuit's enable en input is active (set to 1).

➔ By controlling the enable of the circuits, the Arbitrator controls the circuit which must
take the value on the Bus.

➔ If for example Circuit 2 wants to transmit to Circuit 4. The Arbiter must activate the
Tristate Buffer of the output of Circuit 2 and activate the enable of circuit 4.

Note 1: The most famous mistake among novices in digital electronics is to think that if a
wire is not connected, its voltage must be at 0 volts, therefore it is the logical value 0. But
as a reminder, there is a difference between the voltage and the amperage, it is true that
when a wire is not connected there is no current passing, but for digital electronics the
signal is transmitted using voltage, not current.

Note 2: What imply from the previous note, is that the logic value 0 must be electrically
connected to the (-) terminal (also called the ground or GND) and the logic 1 must be
connected to the (+) terminal (called also Vcc).

Note 3: For a simplicity purpose, the previous illustration of the Bus is made upon a single
wire. But in general, in a real world circuit, a Bus has several wires to transport information
on 8, 16, 32 bits...etc.

Note 4: The use of the Z state-based bus is most often reserved for simple systems or
older systems. For current or more complex systems, Multiplexers/Demultiplexers are
generally more appropriate, or even the use of point-to-point connections between pairs of
circuits for more efficiency in high end systems.

Note 5: It is possible to find the Arbiter as a separate circuit, as it is possible to find it
integrated inside the Processor, and sometimes it is simply implemented by a decoder. In
modern motherboards, we can say that the 2 North-Bridge and South-Bridge chipsets
have some Bus Arbitration functions.

Weak states 0 and 1 :

➔ The Floating value can have values like 1 Volt, 2.5 Volts, 3.8 Volts, and those
values are prohibited in digital binary systems.

➔ This why for some circuits, using Z as an input value cause a problem, and can lead
to a malfunction in the circuit.

➔ In addition, not having a stable input value is a bad way to design digital circuits.

➔ This is why for all these reasons, hardware designers use a 4th and a 5th state after
0, 1 and Z, referred as 0-weak and 1-weak.

➔ The 0-weak and the 1-weak are fixed constants and cannot be changed like the
other signals (0,1 and Z).

22

➔ They are generally used to override (replace) the Z value in an empty bus (does not
transmit) and provide a stable input to circuits.

➔ The top 3 Buses are connected to the constant value 0-weak, and the bottom 3
Buses are connected to the constant value 1-weak.

➔ To provide a low value on a wire, simply connect a resistor to the 0 Volt (or GND)
terminal for the 0-weak constant, and a 5 Volt (or Vcc) resistor for the 1-weak
constant.

➔ In the two buses on the left the Tristate Buffer controller is at 0 and outputs Z. In this
case the Z value is overridden by 0-weak in the bus at the top, and by 1-weak at the
bottom.

➔ On the two buses in the middle there is no conflict, since for the one at the top the
Tristate Buffer passes the value 0, and the bus contains 0-weak, and vice versa at
the bottom, the Tristate Buffer passes the value 1, and the bus contains 1-weak.

➔ For the two buses on the right, there is a conflict on both. At the top, the Tristate
Buffer passes the value 1 and the bus contains a 0-weak. In this case it is the 1
which occupies the bus. And the same thing at the bottom, the Tristate Buffer
passes the value 0 and the bus contains a 1-weak, it is the 0 which occupies the
bus.

➔ The rule is that if a 0-weak or 1-weak conflicts with state Z, 0-weak or 1-weak wins.
In the other hand, if 0-weak or 1-weak conflicts with 1 or 0, 1 or 0 wins.

➔ The relationship of domination is : (0Ʌ1) > (0-weak Ʌ1-weak) > Z. (Ʌ is an or, > is
the direction of domination).

23

Remarque 1: The resistor connected to the Vcc to provide the 1-weak is called PullUp
resistor, by convention it must be shown facing upwards on the diagrams. And conversely,
the resistor connected to the GND to provide the 0-weak is called PullDown resistor, and
by convention on the diagrams should be represented oriented downward. In real world,
the resistance can have a value between 1kΩ-10kΩ.

Remarque 2: Understanding why adding a resistor produces a weak signal that cancels in
conflict with a normal signal falls into the realm of analog electronics, which will not be
explained here. Despite thas, its operation remains relatively simple and it is possible for a
student with his knowledge to guess it himself.

11. Hardware design by slicing

➔ All complex technologies use what is called composition design, modularity,
hierarchy, in their design.

➔ The concept was described in the first rule of constructing a combinational circuit,
that is, the combinational circuit consists of several small-sized combinational
circuits, which themselves consist of other even smaller circuits and so on, up to the
logic gates.

➔ It is the same concept of fragmenting a large program into several functions in
Software programming.

➔ But actually, the slice composition consists of constructing a circuit with small
components of the same type of circuit itself.

➔ For example, the construction of a 4-input Multiplexer with a bunch of small 2-input
Multiplexers.

➔ This way of design is very practical and very flexible for the easy construction of
circuits with varied sizes. Unfortunately, this technique is only applicable for some
specific circuits and not all circuits.

24

Example 1: The construction of Multiplexer 4 from Multiplexers 2.

Example 2: The construction of a 4-bit 2's Complement/Unsigned Integer adder from a 1-
bit adder.

If we observe the 2's Complement/Unsigned addition operation on a single bit, for
example on the 2nd bit (2nd column in the diagram), we can construct a 1-bit adder which
must have 3 inputs which are the 2nd digit in A, the 2nd digit in B, and the addition carry
from the previous bit (the 1st bit). Producing 2 outputs, which are the Sum and the addition
carry for the next bit (for the 3rd bit).

Note : The adder for 2's Complement and the adder for Unsigned Integer are actually the
same adder, they are interchangeable and produce the correct result for both types of
encoding. On the other hand, the adders for Sign-Magnitude and 1's Complement work
differently, and are not intercompatible.

25

Step 1 : Global scheme

Step 2 : Truth Table

A B Pc S Nc

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Pc : previous carry
Nc : next carry

Step 3 : Disjunctive Canonical Functions

S(A,B,Pc) = A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc

Nc(A,B,Pc) = A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc

Step 4 : Algebraic Minimization

S(A,B,Pc) = A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc

S(A,B,Pc) = A·(B·Pc + B·Pc)+ A·(B·Pc + B·Pc)
S(A,B,Pc) = A·(B ⊕Pc)+ A·(B ⊗Pc)
S(A,B,Pc) = A·(B ⊕Pc)+ A·(B ⊕Pc)
S(A,B,Pc) = A ⊕B ⊕Pc

26

Nc(A,B,Pc) = A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc

Nc(A,B,Pc) = A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc + A·B·Pc

Nc(A,B,Pc) = (A·B·Pc + A·B·Pc) + (A·B·Pc + A·B·Pc) + (A·B·Pc + A·B·Pc)
Nc(A,B,Pc) = (B·Pc) + (A·Pc) + (A·B)

Step 5 : Schematics Logic diagram of 4-bit adder using slicing

In the sliced adder diagram, each 1-bit adder represents a column (1 bit) on the
addition operation in the first diagram. We can also observe in the current diagram how the
next carry of an output adder is passed as input to the previous carry for the next bit.

27

Note 1 : The small triangle on the 4-bit buses A, B, and S are indicators to indiate that only
one wire of the 4 wires has been took apart from the bus.

Note 2 : The 4-bit adder shown here is different from the one shown in section 8.5, this
last didn't have previous carry input. The advantage of the adder presented here is that it
is suited for slicing methods, so we can combine two 4-bit adders to get an 8-bit adder,
and so on to have adders on 12 bits, 16 bits, 32 bits...etc.

Note 3: The condition for the 4-bit adder to work properly is that the previous carry input of
the first adder must be set to 0, the first bit has no previous carry.

Note 4: The main reason for the success of 2's Complement encoding compared to other
signed encodings, is that with 2's Complement encoding the Hardware does not need a
subtractor, the subtraction is performed by the addition of A with (-B). Unlike Sign-
Magnitude encoding which requires a dedicated subtractor. For 1's Complement, the
subtractor can also be replaced by an adder, but there are situations where it must do the
addition twice.

Note 5: The 1-bit adder that we have just seen is called Full-Adder, there is also another
type of 1-bit adder, called Half-Adder, it will be presented in the following example.

Example : Falf-Adder

A half-adder is a 1-bit adder that has no previous carry input, it does the addition without
previous carry.

Step 1 : Global scheme

28

Step 2 : Truth Table

A B S Nc

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Nc : next carry

Step 3 : Disjunctive Canonical Functions

S(A,B) = A·B + A·B
Nc(A,B) = A·B

Step 4 : Algebraic Minimization

S(A,B) = A·B + A·B
S(A,B) = A ⊕B

Nc(A,B) = A·B

Step 5 : Schematics

It is possible to construct a Full-Adder from 2 Half-Adders as in the following diagram,
hence the name Half-Adder.

29

Note 1 : It is also possible to construct multi-bit adders with only half-adders.

Note 2 : The term Pin refer to digital input or output, its origin comes from the domain of
electronics where physically it represents the connector of an integrated circuit (IC)
soldered on a printed circuit (called PCB).

30

