Machine Structures 2 resit exam solution

Exercise 1: (4 points)

- **1.** In Digital Electronics, information is fundamentally represented using the <u>binary system</u>, (relies only two distinct values <u>1 and 0</u>, also considered correct). (**1 point**)
- **2.** The Boolean expression for an XOR gate with inputs A and B and output S is : $S = A \oplus B$ (0.5 point)

Truth Table of an XOR gate: (0.5 point)

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

- **3.** A D-Latch is transparent when the clock is at <u>1</u>. (0.5 point)

 And The D-FlipFlop is transparent while the <u>rising edge</u> (or <u>passing from 0 to 1</u>) of the clock. (0.5 point)
- **4.** The values inside the FlipFlops register of a Sequential Circuit represent the encoding <u>States</u> of the F.S.M related to the Sequential Circuit. (1 point)

Exercise 2: (5 points)

5-step method to design the Decoder 4-2:

Step 2: Truth Table (1 point)

E1	E0	S0	S1	S2	S3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Step 3: Canonical Disjunctive Functions (1 point)

 $S0(E1,E0) = \overline{E1} \cdot \overline{E0}$

 $S1(E1,E0) = \overline{E1} \cdot E0$

 $S2(E1,E0) = E1 \cdot \overline{E0}$

 $S3(E1,E0) = E1 \cdot E0$

Step 4: Karnaugh Map

No more simplification is possible.

Step 5 : Schematics (1 point)

1. Inputs: (E1,E0) = (0,0) and (In3,In2,In1,In0) = (0,0,0,1), the circuit *output* = $\underline{1}$ (0.5 point) Inputs: (E1,E0) = (1,1) and (In3,In2,In1,In0) = (1,1,1,1), the circuit *output* = $\underline{1}$ (0.5 point)

2. The circuit created in the schematics is a : Mutiplexer 4-1 (1 point)

Exercise 3: (4 points + 1 point)

1. The timing diagram of the circuit : (1 point for each signal)

2. Name the circuit is : <u>Circular SIPO Shifter</u>. (same meaning as <u>Circular</u> is accepted) (1 point)

Exercise 4: (7 points)

Step 1: Global Scheme (1 point)

B : Button S : Sensor M : Motor

Step 2: F.S.M. (1 point)

Note: Only the most important transitions are depicted in the F.S.M.

Step 3: Transition Table (1 point)

Current State	В	S	Next State
S0	0	0	S0
S0	0	1	S0
S0	1	0	S1
S0	1	1	S0
S1	0	0	S1
S1	0	1	S0
S1	1	0	S1
S1	1	1	S0

Step 4: Encoded States Table and Outputs Table (1 point)

State	S _t	M
S0	0	0
S1	1	1

 $\underline{\textbf{Note}}$: We name the state encoding S_t to make it different from S, the sensor input.

Step 5: Encoded Transition Table (1 point)

St	В	S	S _t '
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Step 6: Logical Functions (1 point)

 $M(S_t) = S_t$ (directly extracted)

B S				
S _t	00	01	11	10
0	0	0	0	1
1	1	0	0	1

 $S_t'(S_t,B,S) = B \cdot \overline{S} + S_t \cdot \overline{S}$

Step 7: Schematics (1 point)

