Problem set 2 solution (Number System)

Exercise 1:

1. Decimal to Binary:

• Convert (25)10 to binary using Successive Euclidean Division by 2:

Division	Remainder
25 ÷ 2 = 12	1
12 ÷ 2 = 6	0
$6 \div 2 = 3$	0
3 ÷ 2 = 1	1
1 ÷ 2 = 0	1

$$(25)_{10} = (11001)_2$$

• Convert (100)10 to binary using Successive Euclidean Division by 2:

Division	Remainder
100 ÷ 2 = 50	0
50 ÷ 2 = 25	0
25 ÷ 2 = 12	1
12 ÷ 2 = 6	0
6 ÷ 2 = 3	0
$3 \div 2 = 1$	1
$1 \div 2 = 0$	1

$$(100)_{10} = (1100100)_2$$

• Convert (153)₁₀ to binary using Successive Euclidean Division by 2:

Division	Remainder
153 ÷ 2 = 76	1
76 ÷ 2 = 38	0
38 ÷ 2 = 19	0
19 ÷ 2 = 9	1
9 ÷ 2 = 4	1
4 ÷ 2 = 2	0
2 ÷ 2 = 1	0
$1 \div 2 = 0$	1

 $(153)_{10} = (10011001)_2$

2. Binary to Decimal:

• Convert (11011)₂ to decimal using Polynomial Formula with base-2:

$$(1x2^4) + (1x2^3) + (0x2^2) + (1x2^1) + (1x2^0) = 16 + 8 + 0 + 2 + 1 = (27)_{10}$$

(11011)₂ = (27)₁₀

• Convert (1000101)₂ to decimal using Polynomial Formula with base-2:

$$(1x2^6) + (0x2^5) + (0x2^4) + (0x2^3) + (1x2^2) + (0x2^1) + (1x2^0)$$

= 64 + 0 + 0 + 0 + 4 + 0 + 1 = **(69)**₁₀

$$(1000101)_2 = (69)_{10}$$

• Convert (11111111)₂ to decimal using Polynomial Formula with base-2:

$$(1x2^7) + (1x2^6) + (1x2^5) + (1x2^4) + (1x2^3) + (1x2^2) + (1x2^1) + (1x2^0)$$

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = (255)₁₀

$$(111111111)_2 = (255)_{10}$$

3. Decimal to Octal:

Convert (45)₁₀ to octal using Successive Euclidean Division by 8:

Division	Remainder
45 ÷ 8 = 5	5
$5 \div 8 = 0$	5

$$(45)_{10} = (55)_8$$

Convert (212)₁₀ to octal using Successive Euclidean Division by 8:

Division	Remainder
212 ÷ 8 = 26	4
26 ÷ 8 = 3	2
$3 \div 8 = 0$	3

$$(212)_{10} = (324)_8$$

4. Octal to Decimal:

• Convert (63)₈ to decimal using Polynomial Formula with base-8:

$$(6x8^1) + (3x8^0) = 48 + 3 = (51)_{10}$$

$$(63)_8 = (51)_{10}$$

• Convert (307)₈ to decimal using Polynomial Formula with base-8:

$$(3x8^2) + (0x8^1) + (7x8^0) = (3x64) + 0 + 7 = 192 + 7 = (199)_{10}$$

$$(307)_8 = (199)_{10}$$

5. Decimal to Hexadecimal:

Convert (30)₁₀ to hexadecimal using Successive Euclidean Division by 16:

Division	Remainder
30 ÷ 16 = 1	14 (E)
1 ÷ 16 = 0	1

$$(30)_{10} = (1E)_{16}$$

Convert (4096)₁₀ to hexadecimal using Successive Euclidean Division by 16:

Division	Remainder
4096 ÷ 16 = 256	0
256 ÷ 16 = 16	0
16 ÷ 16 = 1	0
1 ÷ 16 = 0	1

$$(4096)_{10} = (1000)_{16}$$

6. Hexadecimal to Decimal:

• Convert (1A)₁₆ to decimal using Polynomial Formula with base-16:

$$(1x16^{1}) + (Ax16^{0}) = (1x16) + (10x1) = 16 + 10 = (26)_{10}$$

$$(1A)_{16} = (26)_{10}$$

• Convert (C3D)₁₆ to decimal using Polynomial Formula with base-16:

$$(Cx16^2) + (3x16^1) + (Dx16^0) = (12x256) + (3x16) + (13x1)$$

= 3072 + 48 + 13 = (3133)₁₀

$$(C3D)_{16} = (3133)_{10}$$

7. Binary to Octal/Hexadecimal:

• Convert (101101010)₂ to octal using 3-bits equivalence method:

$$(101 \mid 101 \mid 010)_2 = (5 \mid 5 \mid 2)_8$$

$$(101101010)_2 = (552)_8$$

• Convert (11100101100)₂ to hexadecimal using 4-bits equivalence method:

$$(0111 \mid 0010 \mid 1100)_2 = (7 \mid 2 \mid C)_{16}$$

$$(11100101100)_2 = (72C)_{16}$$

8. Octal/Hexadecimal to Binary:

• Convert (725)₈ to binary using 3-bits equivalence method:

$$(7\ 2\ 5)_8 = (111\ |\ 010\ |\ 101)_2$$

$$(725)_8 = (111010101)_2$$

• Convert (A5B)₁₆ to binary using 4-bits equivalence method:

$$(A 5 B)_{16} = (1010 | 0101 | 1011)_2$$

$$(A5B)_{16} = (101001011011)_2$$

9. Octal to Hexadecimal:

• Convert (724)₈ to hexadecimal going through binary:

$$(7\ 2\ 4)_8 = (111\ |\ 010\ |\ 100)_2 = (0001\ |\ 1101\ |\ 0100)_2 = (1\ D\ 4)_{16}$$

$$(724)_8 = (1D4)_{16}$$

• Convert (3051)₈ to hexadecimal going through binary:

$$(3\ 0\ 5\ 1)_8 = (011\ |\ 000\ |\ 101\ |\ 001)_2 = (0110\ |\ 0010\ |\ 1001)_2 = (6\ 2\ 9)_{16}$$

$$(3051)_8 = (629)_{16}$$

10. Hexadecimal to Octal:

• Convert (A6)₁₆ to octal going through binary:

$$(A 6)_{16} = (1010 \mid 0110)_2 = (010 \mid 100 \mid 110)_2 = (2 4 6)_8$$

$$(A6)_{16} = (246)_8$$

• Convert (1D3)₁₆ to octal going through binary:

$$(1 D 3)_{16} = (0001 | 1101 | 0011)_2 = (000 | 111 | 010 | 011)_2 = (0 7 2 3)_8$$

$$(1D3)_{16} = (723)_8$$

Exercise 2:

1. It is possible to write the number 4000₁₀ in sexagesimal by converting 4000 to base-60:

Division	Remainder
4000 ÷ 60 = 66	40
66 ÷ 60 = 1	6
$1 \div 60 = 0$	1

So, (4000)₁₀ in base 60 is represented as (1, 6, 40)₆₀.

Remark 1: It is important to understand that 40 is not a number but the digit 40.

2. From the previous answer in 4000 seconds we have: 1 hour: 6 minutes: 40 seconds

Exercise 3:

1. Determining the unknown base x solving the following equation $(101)_x = (26)_{10}$

To solve this, we need to convert $(101)_x$ to base-10.

$$(101)_x = 1 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0$$

 $(101)_x = x^2 + 0 + 1$
 $(101)_x = x^2 + 1$

Now we set this equal to $(26)_{10}$:

$$x^{2} + 1 = 26$$

 $x^{2} = 26 - 1$
 $x^{2} = 25$
 $x = \sqrt{25}$
 $x = 5$ (Since bases are positive)

So, the unknown base x = 5.

2. Once x is found, convert the number $(142)_x$ to Decimal, Binary, and Hexadecimal.

5

Now that x = 5, we need to convert $(142)_5$ to Decimal, Binary, and Hexadecimal:

a. (142)₅ to Decimal using Polynomial Formula with base-5:

$$(142)_5 = 1.5^2 + 4.5^1 + 2.5^0$$

$$= 1.25 + 4.5 + 2.1$$

$$= 25 + 20 + 2$$

$$= (47)_{10}$$

b. (142)₅ (which is (47)₁₀) to Binary:

We'll convert (47)₁₀ to binary using Successive Euclidean Division by 2:

Division	Remainder
47 ÷ 2 = 23	1
23 ÷ 2 = 11	1
11 ÷ 2 = 5	1
5 ÷ 2 = 2	1
2 ÷ 2 = 1	0
1 ÷ 2 = 0	1

$$(47)_{10} = (101111)_2$$

c. (142)₅ (which is (101111)₂) to Hexadecimal:

We'll convert (101111)₂ to hexadecimal using 4-bits equivalence method:

$$(101111)_2 = (0010 \mid 1111)_2 = (2F)_{16}$$

$$(47)_{10} = (2F)_{16}$$

3. Convert the decimal number (205)₁₀ to base x (which is base-5).

We'll convert (205)10 to base-5 using Successive Euclidean Division by 5:

Division	Remainder
205 / 5 = 41	0
41 / 5 = 8	1
8 / 5 = 1	3
1 / 5 = 0	1

$$(205)_{10} = (1310)_5$$

Exercise 4:

- **1.** Decimal Fraction to Binary Fraction conversion:
- Convert (0.75)₁₀ to binary fraction using Successive Multiplication by 2:

6

Multiplication	Integer part
0.75 x 2 = 1.50	1
0.50 x 2 = 1.00	1

$$(0.75)_{10} = (0.11)_2$$

• Convert (0.125)₁₀ to binary fraction using Successive Multiplication by 2:

Multiplication	Integer part
$0.125 \times 2 = 0.25$	0
$0.25 \times 2 = 0.50$	0
$0.50 \times 2 = 1.00$	1

$$(0.125)_{10} = (0.001)_2$$

• Convert (12.8125)₁₀ to binary:

First, convert the integer part (12)10 to binary using Successive Euclidean Division by 2:

Division	Remainder
12 ÷ 2 = 6	0
6 ÷ 2 = 3	0
3 ÷ 2 = 1	1
1 ÷ 2 = 0	1

$$(12)_{10} = (1100)_2$$

Next, convert the fractional part (0.8125)₁₀ to binary fraction using Successive Multiplication by 2:

Multiplication	Integer part
0.8125 x 2 = 1.6250	1
0.6250 x 2 = 1.2500	1
0.2500 x 2 = 0.5000	0
0.5000 x 2 = 1.0000	1

$$(0.8125)_{10} = (0.1101)_2$$

Combine the integer and fractional parts: $(12.8125)_{10} = (1100.1101)_2$

- 2. Binary Fraction to Decimal Fraction conversion:
- Convert (0.11)₂ to decimal fraction using Fractional Polynomial Formula with base-2:

$$(0.11)_2 = 1 \times 2^{-1} + 1 \times 2^{-2}$$

= 1 x (1/2) + 1 x (1/4)
= 0.5 + 0.25
= 0.75

$$(0.11)_2 = (0.75)_{10}$$

• Convert (0.0101)₂ to decimal fraction using Fractional Polynomial Formula with base-2:

$$(0.0101)_2 = 0 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$$

= 0 + 1 x (1/4) + 0 + 1 x (1/16)

$$= 0.25 + 0.0625$$

 $= 0.3125$

$$(0.0101)_2 = (0.3125)_{10}$$

• Convert (1101.1011)₂ to decimal:

First, convert the integer part (1101)₂ to decimal using Polynomial Formula with base-2:

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1
= 8 + 4 + 0 + 1
= 13

$$(1101)_2 = (13)_{10}$$

Next, convert the fractional part (0.1011)₂ to decimal using Fractional Polynomial Formula with base-2:

$$(0.1011)_2 = 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

= 1 x (1/2) + 0 + 1 x (1/8) + 1 x (1/16)
= 0.5 + 0.125 + 0.0625
= 0.6875
(0.1011)₂ = (0.6875)₁₀

Combine the integer and fractional parts: $(1101.1011)_2 = (13.6875)_{10}$

- 3. Decimal Fraction to Octal Fraction conversion:
- Convert (0.5)₁₀ to octal fraction using Successive Multiplication by 8:

Multiplication	Integer part
$0.5 \times 8 = 4.0$	4

$$(0.5)_{10} = (0.4)_8$$

• Convert (87.25)₁₀ to octal:

First, convert the integer part (87)10 to octal using Successive Euclidean Division by 8:

Multiplication	Integer part
87 ÷ 8 = 10	7
10 ÷ 8 = 1	2
$1 \div 8 = 0$	1

$$(87)_{10} = (127)_8$$

Next, convert the fractional part $(0.25)_{10}$ to octal fraction using Successive Multiplication by 8:

Multiplication	Integer part
$0.25 \times 8 = 2.0$	2

$$(0.25)_{10} = (0.2)_8$$

Combine the integer and fractional parts: $(87.25)_{10} = (127.2)_8$

- **4.** Octal Fraction to Decimal Fraction conversion using Fractional Polynomial Formula with base-8:
- Convert (0.4)₈ to decimal fraction.

$$(0.4)_8 = 4 \times 8^{-1} = 4 \times (1/8) = 4/8 = 0.5$$

(0.4)₈ = (0.5)₁₀

• Convert (156.12)₈ to decimal:

First, convert the integer part (156)₈ to decimal using Polynomial Formula with base-8:

$$(156)_8 = 1 \times 8^2 + 5 \times 8^1 + 6 \times 8^0$$

= 1 x 64 + 5 x 8 + 6 x 1
= 64 + 40 + 6
= 110
 $(156)_8 = (110)_{10}$

Next, convert the fractional part (0.12)₈ to decimal using Fractional Polynomial Formula with base-8:

$$(0.12)_8 = 1 \times 8^{-1} + 2 \times 8^{-2}$$

= 1 x (1/8) + 2 x (1/64)
= 0.125 + 2 x 0.015625
= 0.125 + 0.03125
= 0.15625

(0.12)_8 = (0.15625)_{10}

Combine the integer and fractional parts: $(156.12)_8 = (110.15625)_{10}$

- **5.** Decimal Fraction to Hexadecimal conversion:
- Convert (0.5)₁₀ to hexadecimal using Successive Multiplication by 16:

	Multiplication	Integer part
	0.5 x 16 = 8.0	8
^	F\	

$$(0.5)_{10} = (0.8)_{16}$$

• Convert (257.0625)₁₀ to hexadecimal:

First, convert the integer part (257)₁₀ to hexadecimal using Successive Euclidean Division by 16:

Division	Remainder
257 ÷ 16 = 16	1
16 ÷ 16 = 1	0
1 ÷ 16 = 0	1

$$(257)_{10} = (101)_{16}$$

Next, convert the fractional part (0.0625)₁₀ to hexadecimal using Successive Multiplication by 16:

Multiplication	Integer part
0.0625 x 16 = 1.0	1

$$(0.0625)_{10} = (0.1)_{16}$$

Combine the integer and fractional parts: $(257.0625)_{10} = (101.1)_{16}$

6. Hexadecimal Fraction to Decimal conversion:

Convert (0.8)₁₆ to decimal fraction.

$$(0.8)_{16} = 8 \times 16^{-1} = 8 \times (1/16) = 8/16 = 0.5$$

$$(0.8)_{16} = (0.5)_{10}$$

• Convert (**D5.1C**)₁₆ to decimal.

First, convert the integer part (D5)₁₆ to decimal using Polynomial Formula with base-16:

$$(D5)_{16} = 13 \times 16^{1} + 5 \times 16^{0}$$

= 13 x 16 + 5 x 1
= 208 + 5
= 213

$$(D5)_{16} = (213)_{10}$$

Next, convert the fractional part (0.1C)₁₆ to decimal using Fractional Polynomial Formula with base-16:

$$(0.1C)_{16} = 1 \times 16^{-1} + 12 \times 16^{-2}$$

= 1 x (1/16) + 12 x (1/256)
= 0.0625 + 12 x 0.00390625
= 0.0625 + 0.046875
= 0.109375
(0.1C)₁₆ = (0.109375)₁₀

Combine the integer and fractional parts: $(D5.1C)_{16} = (213.109375)_{10}$

Exercise 5:

1. Binary Addition:

$$(1011)_{2} + (0010)_{2} = (1101)_{2}$$

$$1 \stackrel{1}{0} 1 1 \leftarrow 11$$

$$+ 0 0 1 0 \leftarrow 2$$

$$= 1 1 0 1 \leftarrow 13$$

$$(100.11)_2 + (110.1)_2 = (1011.01)_2$$

Align the binary points and pad with zeros:

2. Binary Subtraction:

$$(1101)_2 - (0100)_2 = (1001)_2$$

$$1 \ 1 \ 0 \ 1 \longleftrightarrow 13$$

$$- \ 0 \ 1 \ 0 \ 0 \longleftrightarrow 4$$

$$= 1 \ 0 \ 0 \ 1 \longleftrightarrow 9$$

$$(1000)_2 + (-0011)_2 = (0101)_2$$

This is equivalent to $1000_2 - 0011_2$:

$$(0100)_2 - (1011)_2 = (-111)_2$$

Like in decimal, when the subtracted value is greater that the minuend (first value), we reverse the subtraction and minus the result.

11

$$(10.110)_2 - (10.1)_2 = (0.01)_2$$

Align the binary points and pad zeros:

$$\begin{array}{r}
 1 \ 0.1 \ 1 \ 0 \longleftrightarrow 2.75 \\
 - \ 1 \ 0.1 \ 0 \ 0 \longleftrightarrow 2.25 \\
 = 0 \ 0.0 \ 1 \ 0 \longleftrightarrow 0.25
 \end{array}$$

3. Binary Multiplication:

$$(101)_{2} \times (10)_{2} = (1010)_{2}$$

$$1 \ 0 \ 1 \leftarrow 5$$

$$x \ 1 \ 0 \leftarrow 2$$

$$= 0 \ 0 \ 0$$

$$+ 1 \ 0 \ 1 \cdot 0$$

$$= 1 \ 0 \ 1 \ 0 \leftarrow 10$$

$$(10.11)_2 \times (-10.1)_2 = (-110.111)_2$$

Like decimal, we ignore the negative sign and fractal dot. Then we multiply $(1011)_2$ by $(101)_2$. The final answer will be negative, and the fractal dot is at position 3 (2+1):

$$\begin{array}{c}
1011 \leftarrow 11 \\
x 101 \leftarrow 5 \\
= 1011 \\
+ 0000 \\
+ 1011 \\
\hline
= 110111 \leftarrow 55
\end{array}$$

4. Binary Division:

$$(1010)_2 \div (10)_2 = (101)_2 \mid R = (0)_2$$

$$\begin{array}{c|ccccc}
10 & & & & & 2 \\
 & 10 & 10 & & & & 10 \\
 & -10 & & & & & & 10 \\
\hline
 & -00 & 0 & & & & & \\
\hline
 & -00 & 0 & & & & \\
\hline
 & = 00 & 1 & 0 & & & \\
\hline
 & -10 & & & & & \\
\hline
 & = 00 & 0 & & & & \\
\hline
 & R=0 & & & & & \\
\end{array}$$

$$(11001)_2 \div (101)_2 = (101)_2 \mid R = (0)_2$$

$$(-111.001)_2 \div (1.10)_2 = (-100.11)_2$$

First, we ignore the negative sign, the result will be negative. Like decimal, we need to make the divisor an integer by shifting the binary point of both numbers. The divisor $(1.1)_2$ has 1 fractional digits, so we shift both by 1 place to the right. The dividend $(111.001)_2$ becomes $(1110.01)_2$ and the divisor $(1.10)_2$ becomes $(11)_2$.

We get then do $(1110.01)_2 \div (11)_2$ like a real division and not integer division:

Remark 2: We clearly distinguish between the integer division (with remainder), and real division with fractional dot. It is always possible to perform a real division like it was done in decimal base.

5. The calculation is similar to decimal while multiplying by 10ⁿ:

•
$$(1011)_2 \times 2^2 = (1011)_2 \times (100)_2 = (101100)_2$$

• $(110)_2 \times (1000)_2 = (110)_2 \times 2^3 = (110000)_2$
• $(1100.101)_2 \times 2^4 = (1100.101)_2 \times (10000)_2 = (11001010)_2$

6. The calculation is similar to decimal while dividing by 10ⁿ:

```
• (11000)_2 \div 2^3 = (11000)_2 \div (1000)_2 = (11)_2
• (10111)_2 \div (1000)_2 = (10111)_2 \div 2^3 = (10.111)_2
• (110100.101)_2 \div 2^4 = (110100.101)_2 \div (10000)_2 = (11.0100101)_2
```

Q1: Let consider the powers of 2 in binary:

$$2^{0} = (1)_{2}$$

 $2^{1} = (10)_{2}$
 $2^{2} = (100)_{2}$
 $2^{3} = (1000)_{2}$
 $2^{4} = (10000)_{2}$
 $2^{5} = (100000)_{2}$

From this pattern, we can conclude that the binary representation of: 2^n is simply a 1 followed by n zeros.

We can easily generalize the formula to any base, it is exactly the same: **Base**ⁿ is simply a 1 followed by n zeros. Ex: $8^3 = (1000)_8$

Q2: From 5 solutions, we can conclude that multiplying a binary number by 2^n is equivalent to shifting the binary dot n places to the right, or shifting the entire number if it's an integer n places to the left, padding zeros in LSB.

And from 6 solutions, we can conclude that dividing a binary number by 2^n is equivalent to shifting the binary dot n places to the left, or shifting the entire number if it's an integer n places to the right, effectively removing n zeros from LSB.

We can generalize this observation to any base b. If you multiply a number in base b by b^n , you shift the radix dot n positions to the right, or shifting the number left by padding zeros. And if you divide a number in base b by b^n , you shift the radix point n positions to the left, or shifting the entire number to the right by erasing zeros.