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Chapter 3: Binary Encoding

1. Introduction to Data Representation

We need a link between the abstract mathematics of number systems and the
physical reality of a computer.

A computer is fundamentally an electronic device. It operates based on electrical
signals that are either present (high voltage) or absent (low voltage).

These two distinct electrical states are the physical representation of the two
binary digits: 1 ("on" or "high") and 0 ("off" or "low").

1.1. Encoding

Human

All forms of information that a computer handles, whether it is a simple number,
a text character, an instruction, must be reduced to a simple binary format.
Encoding is the systematic set of rules and conventions that defines how a
specific piece of information is converted into a binary sequence for storage and
processing.

Processing data
in binary format

Information |Information decoded,
encoded in binary” | @ form binary

Machine / Computer

Human

For example, the decimal number 83 is represented by the binary sequence
01010011 on 8 bits. The same binary sequence represent the character ‘S’.

The same binary sequence can represent a number or a character, depending
on the context or the encoding scheme being used by the computer program.
Decoding is the opposite, it is the systematic set of rules and conventions that
defines how a binary sequence is converted into a piece of information.

1.2. Basic Units of Data

This section defines the standard terminology and hierarchy used to describe data
size, moving from the smallest unit upwards:



1.2.1. Bit (Binary Digit)

The absolute smallest unit of data. A single 0 or 1.
Can represent two states 21=2.

1.2.2. Nibble

A group of 4 bits. (Less common term, but useful for explaining Hexadecimal).
Can represent 24=16.

1.2.3. Byte

A universally recognized group of 8 bits.

It is the smallest addressable unit of memory in most modern computer
architectures.

This means the computer can assign a unique location (address) to every byte
in memory.

Can represent 28 = 256.

1.2.4. Word

A group of bits that is processed as a single unit by the Central Processing Unit
(CPU), and normally used over all the architecture.

The size of a word is specific to the computer's architecture (ex: a 32-bit CPU
has a 32-bit word size; a 64-bit CPU has a 64-bit word size).

Data within the CPU is in chunks the size of the computer's word.

1.3. Fixed-width restriction (Memory size)

This concept is crucial as it imposes limits on what can be represented, leading
to the necessary conventions for handling numbers outside that limit.

Data represented inside a computer is limited by 4 characteristics: fixed-width
(size), representable values, range, and the problem of Overflow.

1.3.1. Fixed-width (size or N)

The purpose of fixed-wight for data is to be efficiently stored, addressed, and
processed by hardware. Data must fit into fixed-size storage locations (registers,
memory cells), and be transported on a fixed-size buses.
Data types in programming (char, short, int, long) are simply names for fixed-
width binary representations (8-bit, 16-bit, 32-bit, ...etc.).



1.3.2. Representable values

e For a given Fixed-Width we have a finite number of representable values.
e |t represents all the possible probable combinations of 1s and 0s within N-bits.
e Forinstance, for N-bits we have:

N=1 N=2 N=3 N=
0 00 000 0000
1 01 001 0001

10 010 0010
11 011 0011
100 0100

101 0101

110 0110

111 0111

1000

1001

1010

1011

1100

1101

1110

1111

e We get the formula |values| = 2N

Remark 1: In mathematics, the notation |set| is called cardinality, it counts the number of
elements in a set.

1.3.3. Range

e |t describes the limits of an interval that encloses the represented values.

e For example, if we suppose in the table below the values represent unsigned
numbers. For N=4, the smallest value is 0000 and the largest is 1111.

e Based on the table above, we can formulate an expression related to the
unsigned numbers like so: range = [0, 2N-1]

e The range depends on the format used to represent numbers.

1.3.4. Overflow

e Overflow is a problem that occurs when the result of an arithmetic operation
exceeds the maximum representable value for the fixed number of bits.

e For example, if N=4 bits, the operation 1110 + 1001 = 10111 (14 + 9 = 23) would
produce an overflow. Because the value 23 needs 5-bits to be represented, the
fixed-width 4-bits is not sufficient.

e There exist some solutions to overcome this sort of problem.



2. Encoding Unsigned Integers (Ul)(Positive)

e Numbers are the cornerstone for representing any other information in Computer
Science.

¢ An Unsigned Integer is an integer value that is non-negative.

e The Unsigned Integers came to be the simplest representable form of numbers
in the computer.

e The encoding of an Unsigned Integer is a direct application of the Binary
Number System conversion methods.

e For example, the representation of the positive number (18)1, with a size of 8-
bits is [00010010]ui-s

e The value 10010 is calculated from the conversion Decimal-to-Binary. And the 3
left padded Os are added to complete the 8-bits Fixed-Width.

e Brackets are the way to distinguish encoded numbers inside a machine from
abstract mathematical numbers, like (18)10.

e UI-8, means Unsigned Inter on 8-bits.

e Unsigned Integers are very common in programming languages. Ex: unsigned
int type in C/C++ language.

Remark 2: Integers are not fractional numbers. The fractional number has a different way
of representation.

2.1. Representable values

e Since hardware dictates a fixed data size (visible in the memory locations having
a fixed size), the number of total values is known beforehand.

e The number of values is the total combinations possible in N-bits representation.

e This leads to the formula |values| = 2N.

e For example, 8-bits unsigned integer size has 256 different values, 28 = 256.

2.2. Range

e To determine the range is to find the smallest and the largest values in an
encoding scheme.

¢ The smallest value in Unsigned Integers encoding is always 0. Because it is the
smallest natural number.

e And the largest value is always: max = 2N-1

e We can see the demonstration of the formula in the proof below.

e The range for Unsigned Integers on N-bits is: range = [0, 2N-1].



if we have: then:

20=1 2n-1=100-----00-1= 111----11

2'=10 n n

22=100

23=1000 knowing 111-:--11 is the maximum value in n bits.
24 =10000 n

2°=100000

this leads to: max = 2"-1

we conclude: 2" = 100----- 00,

2.3. Example N=3-bits

e For Unsigned Integer representation of N = 3-bits, the representable values,
|values| = 23 = 8.

¢ And the range =[0,23-1] = [0, 7].

e The representation values are as follows:

0 1 2 3 4 5 6 7
| | | | | | | —>
[000] [001] [010] [011]  [100] [101]  [110]  [111]

3. Encoding Signed Integers (Positive and Negative)

e The unsigned scheme is simple and maximizes the positive range, but it cannot
represent negative numbers.

e The need for computers to handle both positive and negative numbers requires
an encoding scheme that dedicates one of the bits to representing the sign.

e We have 3 Signed Integers encoding schemes, Sign-Magnitude (SM), One's
Complement (1C), and Two's Complement (2C).

¢ The 3 encoding schemes are a historic evolution, starting from Sign-Magnitude,
then One's Complement and now the Two's Complement is the standard
scheme of signed integers in modern machines.

e All the Signed Integer representations use the MSB as the sign bit. If it is 1, the
number is negative, and it it is 0 the number is positive.

e If a number is positive, it is interpreted as an Unsigned Integer. If it is a negative
number, depending on the encoding scheme, it may need some transformation
to get its real value.

e Signed Integers are the default programming language numbers, like int or
long in C/C++ language, for example.

3.1. Sign-Magnitude representation (SM)

e This is the most intuitive method, similar to how we typically write signed
numbers in decimals by simply placing a minus sign.
e The total N-bits are split into two parts: a Sign Bit and a Magnitude.



The Most Significant Bit (MSB), the leftmost bit, is designated as the Sign Bit. 0
indicates a positive number, and 1 indicates a negative number.

The remaining N—-1 bits encode the magnitude (absolute value) of the number in
a standard unsigned binary fashion.

For example, (+5)10 = [§0000101]sm.s,and (-5)10 = [H0000101]sm.c.

3.1.1. Representable values

By observation, we can see that we have two representations of zero:
(+0)10 = [B000]sm.4, and (-0)10 = [H1000]s.4.

This makes the representable values reduced by 1.

Which makes the formula |values| = 2N-1.

3.1.2. Range

We saw from Unsigned Integer that the maximum value is 2N-1.

We know also that magnitude in the Sign-Magnitude scheme of positive values
is on N-1 bits, which makes the maximum of positive numbers: maxpositive=2N"1-1.
And the same for negative numbers, the magnitude is on N-1 bits, which makes
the maximum of negative numbers: maxnegative=-(2N-1-1).

Those 2 limits enclose the range for Sign-Magnitude representation:

range = [-(2N-1-1), +(2N-1-1)].

3.1.3. Example N=3-bits

For Sign-Magnitude representation of N = 3-bits, the representable values,
|values| = 23-1 =7.
And the range = [-(231-1),+(231-1)] = [-3, +3].
The representation values are as follows:

-3 -2 =1 0

| | | \
l I I [

1
|
[111]  [10]  [101] [000]  [001]  [010]  [011]
[100]

2 3
| |
| >

3.2. One's Complement representation (1C)

Historically, Sign-Magnitude was very readable to humans, but relatively difficult
to implement in hardware (in ALU).

One's Complement was an attempt to simplify the hardware by performing
“subtraction by addition” (ex: 5-2 = 5+(-2)). Using only a single, simple addition
operation. But require a second addition in case of overflow.

In One's Complement scheme, positive numbers are represented the same as in
the unsigned scheme.

The representation of a negative number is by inverting all the bits (change all
Os to 1s, and all 1s to 0s) of its positive counterpart.

For example, (+5)1 = [0000101]1c.s,and (-5)10 = [11111010]1c..



3.2.1. Representable values

e Similar to Sign-Magnitude, we can see that we have two representations of zero:
(+0)10 = [0000]1c4, and (-0)10 = [H111]1c.

e This also makes the representable values reduce by 1.

e Which makes the formula |values| = 2N-1.

3.2.2. Range

e Similar to Sign-Magnitude, positive and negative numbers are symmetric.

e And also similar to Sign-Magnitude, excluding the sign bit. N-1 is the number of
bits to represent all positive numbers.

¢ Which makes the maximum of positive numbers: maXgositive = 2N-1-1.

e And the same for negative numbers, they are symmetric to positive, which
makes the maximum of negative numbers: maxnegative = =(2N-1-1).

e Those 2 limits enclose the range for One's Complement representation:

e range = [-(2N-1-1), +(2N-1-1)].

3.2.3. Example N=3-bits

e For One's Complement representation of N = 3-bits the representable values,
|values| = 23-1 =7.

e And the range = [-(23-'-1),+(2%1-1)] = [-3, +3].
e The representation values are as follows:

-3 -2 ~1 0 1 2 3

| | | | | | —>
[100] [101] [110] [000] [001] [010] [011]
[111]

3.3. Two's Complement representation (2C)(The Standard)

e Two's Complement is the dominant method used in practically all CPUs and
ALUs today.

e Because it solves the problems of two zeros and complex arithmetic, simplifies
hardware design significantly.

e Like the 2 previous schemes, positive numbers are represented the same as in
the unsigned scheme.

e But for the negative numbers, it is more complex to calculate. The method we
will use requires 2 steps.

e To convert a positive number to a Two's Complement negative representation.
First step is to invert the number, it's just One's Complement transformation,
then adding 1.

e For example (-5)10 = [11111011]2cs

_ 1C +1
#5=00000101 72 1111010 ————> [I111011),

-5



e The opposite is to convert a negative Two's Complement number to its
counterpart positive number. It is exactly the same steps, the first step is to
invert the 2C number, using One's Complement, then adding 1.

e For example [11111011]2c.s = (-5)10

1o 1C. OOOOO‘IOO—H’I 00000101= +5
————2¢¢ (inverting)
)

Remark 3: Many methods exist to convert to and from Two's Complement numbers, in this
lecture we only use the 2-step method: 1C followed by adding 1. In the 2 directions.

3.3.1. Representable values

e We can see the conversion of the value (-0)+o using Two’s Complement, that it is
the same as (+0)10. Ex: +0 = 0000 —'¢— 1111 —*'— [0000]2c.4 = -0

e That means there is only one representation of zero, which is a huge advantage
for the scheme.

e Without a double zero the formula becomes |values| = 2N.

3.3.2. Range

e Similar to Sign-Magnitude and One’s Complement positive numbers. N-1 is the
number of bits to represent all positive numbers.

e That makes the maximum of positive numbers: maxgositive = 2N-1-1.

e Counting the negative numbers in Two's Complement is different.

e We suppose the zero value is without a sign. We get one more negative value
compared to positives. It is the counterpart of the value (+0) that should be (-0).

e Normally is a value in the form of [100---0].c.n, knowing that negative values,
similar to One’s Complement are in an descending order. (-1) has the highest
representation [111---1],c.n. and the lowest is [100---0]xc.n.

e While converting [100---0].cn in Two’s Complement, we get the value:

[M00---0lbcn —'¢— 011---1 —*'— 100---0 = 2N-! (we have N-1 zeros)

e This additional value changes the maximum negative to: maxXnegative = =(2N-1)

¢ Which indicates clearly that the positive and negative are not symmetric like in
One’s Complement and Sign-Magnitude.

* range = [-(2N1), +(2N1-1)].

3.3.3. Example N=3-bits

e For One's Complement representation of N = 3-bits, the representable values,
|values| = 23 = 8.
e And the range = [-(23"),+(23'-1)] = [-4, +3].
e The representation values are as follows:
-4 -3 -2 -1 0 1 2 3
% i i | | | | —>
[100]  [101]  [110]  [11] [000] [001]  [010]  [011]




3.4. Subtraction

In this section we will compare the 3 signed representations regarding arithmetic
operations, especially addition and subtraction:

e Let us see how subtraction is performed in differently in the 3 representations
with the example 8 - 3.

e For the Sign-Magnitude in the diagram below (SM) the subtraction is done
directly ([801000]sm.6 - [l00011]sme), this means the adder and the subtracter are
2 separate hardware.

¢ In the Sign-Magnitude the hardware needs to check the signs of the 2 operands
to decide which is the appropriate operation. Which makes the hardware
complex.

e In the One’s Complement (1C) operation, the subtraction is done indirectly by
using addition (8 + (-3)), but we need to add +1 if there is overflow.

e The subtraction [801000]:cs + [11100]ics (8 + (-3)) needs 2 additions, but no
specific hardware for subtraction. Which is simpler than Sign-Magnitude.*

e Like One’s Complement, Two’s Complement uses the “subtraction by addition”
technique, and the 8 - 3 operation is performed with 8 + (-3) ([001000].c.6 +
[111101]oc.6).

e We can see in the diagram below that in the case of Two’'s Complement, only
one addition is necessary to do subtraction. The overflow bit is ignored.

111
00 11000 «—8 001000«—8 | ' (001000<«8
-000011«—3 | + 1111003 [ + 1111013
11000100«—4 | =X000100+«—5

=000101 <=5

+ 1l

1
000101<«—5

SM 1C 2C

e We can clearly see that the Two’'s Complement is the simplest way to perform
addition and subtraction, that needs only one adder.

e This simplification also applies to multiplication and division, knowing that those
2 require the use of addition and subtraction.

Remark 4: In this course, students only need to know subtraction in Two’'s Complement.
The other operations have just been shown for the purpose of the demonstration.

Remark 5: We didn’t mention the Unsigned Integer in 3 operations shown above. But the
addition done in Two’s Complement remains valid for Unsigned Integers too. Only the
interpretation is different. For example, [1100]u + [0010]y = [1110]y is interpreted as 12 + 2
= 14. But in 2C the same [1100]zc + [B010].c = [1110].c, is interpreted as -4 + 2 = -2.



4. Encoding Real/Fractional Numbers

Like negative numbers, the machine needs a way to represent functional numbers.
The machine only recognizes binary format, and we need a way to represent the fractional
dot. Two methods were developed for this job: Fixed-Point and Floating-Point.

4.1. Fixed-Point Representation

It is very easy to represent fractional numbers using Fixed-Point, the N-bits are
divided into 3 parts.

The binary value of the number is distributed over 3 parts.

The sign bit for the sign of the fractional number.

The integer part, a group of bits to represent the integer part of the fractional
number.

And the fractional part, a group of bits to represent the fractional part of a
number.

For example, in 8-bits Fixed-Point representation the MSB is used for the sing,
3-bits are used for the integer part, and 4-bits are used for the fractional part.
The value (-5.25)1 = (-101.01), is represented as follows: [I101 |0100]rixa.4

1/101/0100
/ S
sign integer fractional

The problem with Fixed-Point is a fundamental limitation in range and precision.
It is not adequate for applications requiring both a vast range and fine precision.
Nevertheless, it is still in use in some specific simple applications, but definitely
not the standard scheme to represent real numbers.

4.2. Floating-Point Representation

Many domains and scientific applications like cosmology and subatomic physics
need big numbers or very fine precision numbers.

The solution is to use a representation analog to Scientific Notation (Ex: 1.23 x
1027).

By definition, the Scientific Notation imposes one digit in the integer part, and the
remain part is in the fraction. The decimal point is moved accordingly using the
exponent

The decimal point can be moved, this is why it is called floating point.

With the Scientific Notation it is possible to get very large numbers or very small
numbers, but not both at the same time, unfortunately.

4.2.1. Concept

The way to represent Scientific Notation is:

Fractional number = Sign x Significand x BaseFxponent

In binary systems, this becomes:
Floating Piont (FP) = (-1)Si8" x Mantissa x 2Exponent

10



Sign: is Sign bit (0 for positive, 1 for negative).

Mantissa: is the Significand, is the number.

Exponent: the power of 2 that the mantissa is multiplied by.

Example, the number 101.11 is transformed to 1.0111 x 22

Moving the fractional point left is an increment of the Exponent, and moving right
is a decrement.

4.2.2. IEEE 754 Standard (The Industry Standard)

To ensure that real numbers are represented identically across all computers,
the normalization Institute IEEE established the IEEE-754 Standard for Floating-
Point encoding scheme.

It is different from the simplified representation shown above.

Two different versions well-known for the standard related to the Size (N) in bit
of the real number are: 32-bits (Simple Precision) and 64-bits (Double
Precision).

The 32-bits Floating-Point in C/C++ is the type f1oat, and 64-bits is double.
Every IEEE-754 Floating-Point number is divided into 3 fixed-size fields:

1-bit N Nm
Sian —r : - s * a
9 Biased Exponent Mantissa
bit L |
N
e The size of the different fields is as in the following table:
Format N N. Nm
32-bit Floating-Point 32-bits 8-bits 23-bits
64-bit Floating-Point 64-bits 11-bits 52-bits

The following formula gives the way to decode the value of a Floating-Point:
FP = (-1)° x (1.M) x 2Fne
Where:

Ereat = Epigsed — Bias

S: is the sign bit

M: is the Mantissa

Eeal: is the Real Exponent

Ebiased: IS the Biased Exponent

Bias: is a delta to shift the range of the exponent including negative values.
It is also possible to use a global version of the formula:

FP = (—1)5 X (1M) w Q¥ Biasea—DBias

This formula is used to do the decoding operation, the encoding operation is
done in reverse.

3 elements of this formula need more depth explanation, and the logic behind
the way this formula is used to encode Floating-Point numbers.

The first element is how the Sign bit is used. The calculation of (-1)S produces -1
if S=1 and +1 if S=0, this aligns perfectly with the interpretation of a sign bit.

11



Let prete
we have:

If we divide the values into 2 equal halves and

The second element, the Mantissa in the IEEE-754 scheme always represents
the fractional part of the number.

Knowing that only the first digit (different from zero) is assigned to the integer
part in a Scientific Notation, and 1 is the only candidate in a binary number.

That makes the first 1 in the representation implicit and doesn’t need to be
stored, saving this way a precious bit of information.

This implicit leading 1 was called normalization of the number by IEEE, and
guarantees the inequality 1< 1.M < 2.

The third element is the exponent. On Ne-bits, it is required to represent positive
and negative numbers. The IEEE didn’t choose the usual representations, like
SM, 1C, or 2C, they were judged complex. And chose a biased representation.
The reason to choose the biased method is to make the comparison between
real numbers faster by the hardware.

The concept of bias is to delta shift (called bias) by half to the negative, the
interval of Unsigned Integers in Ne-bits. Using the formula:

real_number = shifted_number - delta

The demonstration below shows how it is done on N¢=4-bits:

nd N.=4-bits, Let pretend (0111) is the new shifted O,
below it are negative numbers and
above it are positive numbers:

15 = 1111 8 =111
14 = 1110 7=1110
13 = 1101 6 = 1101
12 = 1100 5=1100
11 = 1011 4 =101
10 = 1010 3=1010
9=1001 2=1001
8 = 1000 1=1000
7 = 0111 0=0111
6 =0110 -1=0110
5=0101 -2 =0101
4 =0100 -3=0100
3=001M -4 = 0011
2=0010 -5=0010
1= 0001 -6 = 0001
0 = 0000 -7 = 0000

The formula to do the transformation is:

take the value just below the middle (7=0111). |__new_number = old_number - delta |

Delta (Bias) is the new 0. and always
has the form (011----11), on Ne-bits.

A generalization of the Bias from the form (011----11), on Ne-bits can be
deduced, knowing that the form contains N.-1 one. The formula is: Bias = 2Ne-1-1

We can find the Biases for the 2 IEEE representations:

Format N. Bias
32-bit Floating-Point 8-bits 2811 =127
32-bit Floating-Point 11-bits 2811 =1023

12



4.2.3. IEEE-754 32-bits Single-Precision example
Let's decode the 32-bit binary number: 0]10000001|00010000000000000000000

1. Extract Fields:
e S (Sign bit) = 0 — Positive number (+)
® Epiasea (Biased Exponent) = 10000001 — Ep = (129)10
e M (Mantissa) = 00010000000000000000000 — M = 0001

2. Calculate Real Exponent:
e Bias = (127)10
L4 Erea| = Ebiased - BiaS = 129 - 127 = 2 g Er = 2

3. Determine Significand:
e Since the number is normalized, the significand is 1.M
e Significand = (1.0001).

4. Calculate Final Value:
e The formula: FP = (-1)S x 1.M x 2Fr
FP = +1.0001 x 22 = (100.01),
e Using FP.FPF: (100.01),= (1x22 + 1x22) = (4.25)1

Let do now use the opposite example, encoding the decimal number 21.125 into the 32-bit
IEEE 754 Single-Precision format.

1. Convert the Number to Binary:
e First, convert the integer part (21).0 to binary using SED:

Division Remainder
21+2=10 1
10+2=5 0
5+2=2 1
2+2=1 0
1+2=0 1

(1 2)10 = (1 0101 )2

e Next, convert the fractional part (0.125)0 to a binary fraction using SM:

Multiplication Integer part
0.125x2=0.25 0
0.25x2=0.5 0
05x2=1.0 1

(0.125).0 = (0.001)
e Combine the integer and fractional parts: (21.125).0 = (10101.001)

2. Determine the Sign bit (S):
e The number 21.125 is positive — S=0

3. Normalize the Binary Number:
e The binary number must be converted to the format 1.Mx2Ereal,

e We move the binary point to the left until only one '1' remains before it:
(10101.001), = 1.0404004 < 2f

13



e From normalization, we can determine the Real Exponent: E, = 4
e And we can also determine the Mantissa: M = 0101001

4. Calculate the Biased Exponent (Ey):
e We use the Exponent Bias for Single-Precision, which is Bias = 127.
e We use the Exponent formula:
E: = E, - Bias — E, = E; + Bias
Eb=4+127 = (131)10
e Now, we convert E;, to its 8-bit binary representation using SED:
Division Remainder
131+2=65
65+2=32
32+2=16
16+2=8

=N~

Y I R
NINININ
nfnpnpmnpn

O (N>
=000 |0 |0~ =

(131)10 = (10000011)
e We have E, = [10000011]

5. Assemble the Final 32-bit Representation:
e We have the 3 fields in a 32-bits FP representation organized as follows:
Sing bit (1-bit) | Biased Exponent (8-bits) | Mantissa (23-bits)
e We can form the final binary representation (M is right padded by 0s):
[0]100 0001 1]|010 1001 0000 0000 0000 0000]¢-32
e Still this format is hardly readable by humans, we need to convert it to
hexadecimal: [41A90000]¢p-32

Remark 5: FP-32 means 32-bits Floating-Point Single-Precision real number.

4.2.3. Single-Precision and Double-Precision range and precision

Ranges and precision for 32-bits and 64-bits Floating-Point in decimals are listed as
follows:

Format Approximate Decimal Range Approximate Decimal Precision
32-bit Floating-Point +10738 to £10*38 7 digits
64-bit Floating-Point +107308 to +1(Q*308 15-16 digits

¢ The decimal range and precision should be seen as related to the Scientific
Notation.

¢ Approximate Decimal Range is the range of the exponent in Scientific Notation
representation. And Approximate Decimal Precision is the number of digits
supported in the Significand, or the number of digits in the number.

4.2.4. Special Values (Reserved for Errors and Edge Cases)
The IEEE 754 standard reserves the minimum and maximum stored exponent

values for specific cases to handle exceptions in a standard way, the table below lists
these special cases:

14



Biased Exponent (E,) | Mantissa (M) | Represents

zero (*0): The only way to represent an

All Os All Os
exact zero.

Denormalized Numbers: Used for
All Os Non-Zero .
numbers smaller than the normal minimum.

All 1s All Os Infinity (£«) : Result of division by zero

All 1s Non-Zero Not-a-.Number (NaN): Result of undefined
operations (ex: 0/0,0—).

By observation of the table, the rule is simple, if E, is all Os or all 1s, the norm
gives a special representation, and those cases should not be decoded as
usual.

This also gives a limit for the Ep, its max = 111---10, and its min = 000---01.

4.2.5. Denormalized Numbers (Values near zero)

Denormalized numbers are used to represent numbers that are too small to be
normalized, but not exactly zero.

They are identified by reserving a specific pattern in the Bias Exponent field. E,
= 0, and the Mantissa is different from 0.

The denormalized formula is slightly different from the normalized formula:

PF = (—1)% x 0.M x 25nn
where

FE.in, = minimum_biased_exponent — Bias = 1 — Bias

We can see that the Significand = 0.M, because we are dealing with smaller

values than the Normalized representation can provide.

And we have the fixed value of Emn, that represents the smallest value

represented by Ex,=1, knowing that E,=0 is the special value.

It is possible to apply the Exponent formula to get Enin. Emin = Ep-Bias = 1-Bias.

Emin represent the real minimum Exponent.

In Single-Precision Floating-Point, Enin = 1-127 = -126.

We can apply an example on a Simple-Precision Denormalized number like so:
[0]00000000|11000000000000000000000]¢p-32

The formulais: (-1)° x 0.11 x 2126 =0.75 x 1.17549 x 10-38
= 8.8162 x 10-3°

Remark 6: IEEE-754 defines other less-known fractional number schemes, like Half-
Precision, a 16-bits Floating-Point (Ne=5, and N»=10), or Quadruple-Precision with 128-
bits (Ne=15, and Nn=112). The same methods and rules apply like for the Single and
Double-Precision.

15



5. Encoding Alphanumeric Data (Text and Characters)

While binary encoding schemes like Two's Complement and IEEE-754 are
essential for representing numbers, computers must also process text.
Character Encoding is the systematic method used to translate these non-
numeric symbols into their binary representations.

A computer only understands the binary digits 0 and 1. For a machine to store or
transmit text data, each character must be assigned a unique numerical code.
Character encoding is a mapping (a look-up table) that assigns a specific, fixed-
length binary sequence (usually one or more bytes) to every character.

That includes letters: 'A', 'B', 'a’, 'b'...etc. Digits as characters: '0', '1', '2',...etc.
Punctuation: ', "', '?', ...etc. Control codes: non-printable codes used for
formatting or device control, such as CR (Carriage Return) or LF (Line Feed).

A universal standard is necessary for data portability. That prevents the same
character getting from many representations. This ensures the data is
compatible over different hardware machines and Operating Systems.

Remark 7: It is important to make a clear distinction between a digit like 2 and its text
character ’2’. The apostrophe generally makes this distinction.

5.1. ASCII (American Standard Code for Information Interchange)

ASCII is the foundational character encoding standard, developed in the 60s,
and is still the basis for much of modern text processing.

Historically, the first version was 7-bit ASCII, that uses 7 bits to represent each
character.

With 7 bits, it can represent 27=128 unique characters coded from 0 to 127.

This set includes the uppercase and lowercase English alphabet, the digits 0-9,
common punctuation, and 33 non-printable control codes.

For example: The code for the letter ‘A’ is (65)10, which is (1000001)..

An extended ASCIl 8-bits version was introduced when computers began
operating on bytes (8-bits) as the minimum unit.

The 8™ bit in ASCIlI was initially unused, when added the set expanded to
28=256 characters adding codes from 128 to 255.

This space was used to add common Western European characters (like letters
with diacritics: €, a, U) and basic graphic symbols.

Unfortunately, these extended versions were often non-standard and varied by
country or application, leading to code page issues.

We have below an example of an 8-bits extended ASCII table:
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Hex 00 (01 |02 [03 [04 [05 |06 |07 [08 |09 [0OA |OB |0C |OD [OE |OF
Declo (1 [2 (3 |4 [5 |6 |7 [8 [9 [10 |11 [12 [13 (14 |15
00 [0 |NUL|SOH|STX ETX|EOT|ENQ|ACK |BEL|BS |HT [LF |VT [FF |CR [sO |sI
10 [16 |DLE |DC1|DC2|DC3|DC4|NAK|[SYN |[ETB|CAN|EM [SUB|ESC/FS |GS [RS |US
20 |32 V(" #(S|%8 [ &["[(|)I*|+]|, |=|e |/
30 148 0|1 |2 |3(4|5|6 |7]|8(9|:|; <|=/>|?
490 64 @ /A | B/C|D|E|F |G/H |I|J|K|L MIN O
so 80 P|Q |R|S|T|U |V WX (Y Z|[|\|]"|_
60 96 |~ |la b/c|d|e |f |[gh|i/j|k|1l mn |oO
70 112 p |d | | S t|u|v |w|X VARA { =
80 (128
90 |144
A0 |160 i |¢ | E B (¥ || |§ ©a |« |7 |=-® |~
BO (176|/° |+ [z |= g (T (=], |* |2 |»|w |v|% |¢
= 192A |A |A|A A A |E|C|E |B|E|E T |T|T |1
po 208D ([N |0 |0 |6 |0 |0 |x|@ U|G|0|U Y|P |B
B0 224 3 |4 |4 |a|a|la|e |c|e|éléle|l 1|1 |1
Fo 2400 d h O |6 |0|0 |0 |+ |@ |ula |G|l |y|b |V

5.2. Unicode (Global Standards)

ASCII is limited to 256 characters, which is enough for English but cannot
accommodate non-Latin scripts like Chinese, Japanese, Korean, Arabic...etc.
There are also thousands of historical or mathematical symbols, and non-official
languages, that need a way to be represented in computers.

This led to the creation of the universal character set, called Unicode.

Unicode is not an encoding scheme itself like ASCII, but a vast, universal
mapping that assigns a unique, platform-independent number, called a Code
Point, to every character.

A Code Point is simply an identifier or fixed number, written in the format
U+XXXX (in hexadecimal), assigned for every character in the catalog.

For example, Latin capital letter A is U+0041. Or the Greek letter alpha (a)
U+03B1.

That includes all the well-known human languages, covering the total of 149000
characters.

The main misconception is that Unicode is not an encoding scheme. It doesn’t
fix how those Code Points should be encoded inside the computer.

But this role is affected by a different group of related encoding schemes, named
UTF-8, UTF-16, and UTF-32.
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5.3. Unicode Encoding Scheme (UTF-8, UTF-16, UTF-32)

An encoding scheme is a set of rules that dictates how a Unicode Code Point
will be converted into a sequence of binary digits (bytes). To be stored on a hard
drive or transmitted over a network.

3 well-known encoding schemes exist, they are described in the table below:

Esnc?r?:r:reg Description
UTE-8 Variable-length: Uses 1, 2, 3, or 4 bytes to represent a Code Point,
depending on the size of the Code Point.(Most common).
UTE-16 Variable-length: Uses 2 bytes for most common characters, and 4

bytes for less common ones. Common in Windows and Java systems.

UTF-32 | character. Simplest for programming, but inefficient for storage or

Fixed-length: Uses 4 bytes for every Code Point, regardless of the

transmission.

For example, the Greek letter alpha (a), with the Code Point U+03B1, is
encoded [0381]UTF—8, [O3B1]UTF_16, and [OOOOO3B1]UTF32

5.4. UTF-8 (Unicode Transformation Format 8-bits)

It is the most common encoding for the internet because it is backward-
compatible with ASCII. Standard ASCII characters are encoded in a single byte.
Meaning all ASCII characters are valid UTF-8, while also being able to represent
any character from any writing system.

It is an encoding that is an encoding that uses a variable number of bytes per
character, making it highly efficient.

It successfully bridges the need for universal character support with storage and
transmission efficiency.
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