
1

Sétif 1 University 1st semester (year 2025/26)
Faculty of Sciences Machine Structures 1 course
Common Core Mathematics and Computer Science Kara Abdelaziz professor

Problem set 3 solution
(Binary Encoding)

Exercise 1:

1).
1. Encoding on 4-bits the decimal: (+6)₁₀

Convert (+6)₁₀ to binary using SED by 2:

Division Remainder
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 3 1

(+6)₁₀ = (+110)₂

2. Encoding on 6-bits the decimal: (-12)₁₀

Convert (-12)₁₀ to binary using SED by 2:

Division Remainder
12 ÷ 2 = 6 0
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

(-12)₁₀ = (-1100)₂

3. Encoding on 8-bits the decimal: (+63)₁₀

Convert (+63)₁₀ to binary using SED by 2:

Division Remainder
63 ÷ 2 = 31 1
31 ÷ 2 = 15 1
15 ÷ 2 = 7 1
7 ÷ 2 = 3 1
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

(-63)₁₀ = (-111111)₂

2

4. Encoding on 10-bits the decimal: (-1)₁₀

Convert (-1)₁₀ to binary using SED by 2:

Division Remainder
1 ÷ 2 = 0 1

(-1)₁₀ = (-1)₂

Fixed-
Width

Decimal
values

Binary
value

Unsigned
Integer

Sign-Magnitude
(MSB Sign bit)

One’s
Complement

(Invert all bits)

Two’s
Complement

(1C +1)
4-bits +6 +110 [0110]UI-4 [0110]SM-4 [0110]1C-4 [0110]2C-4

6-bits -12 -1100 N.A. [100110]SM-6 [110011]1C-6 [110100]2C-6

8-bits +63 +111111 [00111111]UI-8 [00111111]SM-8 [00111111]1C-8 [00111111]2C-8

10-bits -1 -1 N.A. [1000000001]SM-10 [1111111110]1C-10 [1111111111]2C-10

5. Decoding the 4-bits binary [0110]4-bits:

Decode [0110]UI-4 to Decimal is to convert (0110)2 to Decimal using PF:

(0x2³) + (1x2²) + (1x2¹) + (0x2⁰) = 0 + 4 + 2 + 0 = (6)₁₀

[0110]UI-4 = (6)₁₀

Decode [0110]SM-4 to Decimal is to convert (110)2 to Decimal using PF then adding sign:

sign = 0 → positve number (+)
(1x2²) + (1x2¹) + (0x2⁰) = 4 + 2 + 0 = (6)₁₀

[0110]UI-4 = (+6)₁₀

Decode [0110]1C-4 to Decimal, knowing sign is positive is to convert (110)2 to Decimal
using PF:

sign = 0 → positve number (+)
(1x2²) + (1x2¹) + (0x2⁰) = 4 + 2 + 0 = (6)₁₀

[0110]1C-4 = (+6)₁₀

Decode [0110]2C-4 to Decimal, knowing sign is positive is to convert (110)2 to Decimal
using PF:

sign = 0 → positve number (+)
(1x2²) + (1x2¹) + (0x2⁰) = 4 + 2 + 0 = (6)₁₀

[0110]2C-4 = (+6)₁₀

6. Decoding the 6-bits binary [110101]6-bits:

Decode [110101]UI-6 to Decimal is to convert (110101)2 to Decimal using PF:
(1x25) + (1x24) + (0x2³) + (1x2²) + (0x2¹) + (1x2⁰) = 32 + 16 + 4 + 1 = (53)₁₀

3

[110101]UI-6 = (53)₁₀

Decode [110101]SM-6 to Decimal is to convert the magnitude (10101)2 to Decimal using
PF then adding sign:

sign = 1 → negative number (-)
(1x24) + (0x2³) + (1x2²) + (0x2¹) + (1x2⁰) = 16 + 4 + 1 = (21)₁₀

[110101]SM-6 = (-21)₁₀

Decode [110101]1C-6 to Decimal, knowing sign is negative is to invert all bits in
(110101)2 then convert it to Decimal using PF:

sign = 1 → negative number (-)
(110101)2 __invert→ (001010)2

(1x2³) + (0x2²) + (1x2¹) + (0x2⁰) = 8 + 2 = (10)₁₀

[110101]1C-6 = (-10)₁₀

Decode [110101]2C-6 to Decimal, knowing sign is negative is to invert all bits in
(110101)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(110101)2 __1C→ (001010)2 __+1→ (001011)2

(1x2³) + (0x2²) + (1x2¹) + (1x2⁰) = 8 + 2 = (11)₁₀

[110101]2C-6 = (-11)₁₀

7. Decoding the 8-bits binary [10000000]8-bits:

Decode [10000000]UI-8 to Decimal is to convert (10000000)2 to Decimal using PF:

(1x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (128)₁₀

[10000000]UI-8 = (128)₁₀

Decode [10000000]SM-8 to Decimal is to convert the magnitude (0000000)2 to Decimal
using PF then adding sign:

sign = 1 → negative number (-)
(0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (0)₁₀

[10000000]SM-8 = (-0)₁₀

Decode [10000000]1C-8 to Decimal, knowing sign is negative is to invert all bits in
(10000000)2 then convert it to Decimal using PF:

sign = 1 → negative number (-)
(10000000)2 __invert→ (01111111)2

(0x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (127)₁₀

[10000000]1C-8 = (-127)₁₀

4

Decode [10000000]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(10000000)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(10000000)2 __1C→ (01111111)2 __+1→ (10000000)2

(1x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (128)₁₀

[10000000]2C-8 = (-128)₁₀

8. Decoding the 10-bits binary [1111111111]10-bits:

Decode [1111111111]UI-10 to Decimal is to convert (1111111111)2 to Decimal using PF:

(1x29) + (1x28) + (1x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰)
= 210 - 1 = (1023)₁₀

[1111111111]UI-10 = (1023)₁₀

Decode [1111111111]SM-10 to Decimal is to convert the magnitude (111111111)2 to
Decimal using PF then adding sign:

sign = 1 → negative number (-)
(1x28) + (1x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰)
= 29 - 1 = (511)₁₀

[1111111111]SM-10 = (-511)₁₀

Decode [1111111111]1C-10 to Decimal, knowing sign is negative is to invert all bits in
(1111111111)2 then convert it to Decimal using PF:

sign = 1 → negative number (-)
(1111111111)2 __invert→ (0000000000)2

(0x29) + (0x28) + (0x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰)
= (0)₁₀

[1111111111]1C-10 = (-0)₁₀

Decode [1111111111]2C-10 to Decimal, knowing sign is negative is to invert all bits in
(1111111111)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(1111111111)2 __1C→ (0000000000)2 __+1→ (0000000001)2

(0x29) + (0x28) + (0x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (1x2⁰)
= (1)₁₀

[1111111111]2C-10 = (-1)₁₀

5

2). To get the number of representable values and the ranges for 4-bits, 6-bits, 8-bits, 10-
bits, we can use the table below summarizes all the formulas related to representable
values and ranges for each integer scheme:

Formulas
for N-bits

Unsigned Integer
(UI)

Sign-Magnitude
(SM)

One’s Complement
(1C)

Two’s Complement
(2C)

|values|= 2N 2N-1 2N-1 2N

Range= [0, 2N-1] [-(2N-1-1), +(2N-1-1)] [-(2N-1-1), +(2N-1-1)] [-(2N-1), +(2N-1-1)]

For 4-bits:

Formulas
for 4-bits

Unsigned Integer
(UI)

Sign-Magnitude
(SM)

One’s Complement
(1C)

Two’s Complement
(2C)

|values|= 24=16 24-1=15 24-1=15 24=16
Range= [0, 24-1] = [0, 15] [-(24-1-1), +(24-1-1)] =

[-7, +7]
[-(24-1-1), +(24-1-1)] =

[-7, +7]
[-(24-1), +(24-1-1)] =

[-8, +7]

For 6-bits:

Formulas
for 6-bits

Unsigned Integer
(UI)

Sign-Magnitude
(SM)

One’s Complement
(1C)

Two’s Complement
(2C)

|values|= 26=64 26-1=63 26-1=63 26=64
Range= [0, 26-1] = [0, 63] [-(26-1-1), +(26-1-1)] =

[-31, +31]
[-(26-1-1), +(26-1-1)] =

[-31, +31]
[-(26-1), +(26-1-1)] =

[-32, +31]

For 8-bits:

Formulas
for 8-bits

Unsigned Integer
(UI)

Sign-Magnitude
(SM)

One’s Complement
(1C)

Two’s Complement
(2C)

|values|= 28=256 28-1=255 28-1=255 28=256
Range= [0, 28-1] = [0, 255] [-(28-1-1), +(28-1-1)] =

[-127, +127]
[-(28-1-1), +(28-1-1)] =

[-127, +127]
[-(28-1), +(28-1-1)] =

[-128, +127]

For 10-bits:

Formulas
for 10-bits

Unsigned Integer
(UI)

Sign-Magnitude
(SM)

One’s Complement
(1C)

Two’s Complement
(2C)

|values|= 210=1024 210-1=1023 210-1=1023 210=1024
Range= [0, 210-1] = [0, 1023] [-(210-1-1), +(210-1-1)]

= [-511, +511]
[-(210-1-1), +(210-1-1)]

= [-511, +511]
[-(210-1), +(210-1-1)] =

[-512, +511]

Exercise 2:

1). The minimum number of bits (N) required to represent +45 and +128 is calculated
using the reverse formula of the power 2 function, which is the log2 function.

We have:

Knowing that:

6

That makes:
Log2(45+1) = ln(46)/ln(2) = 5.5235 ≈ 6 bits (round up)

(+45)10 needs 6-bits.

And:
Log2(128+1) = ln(129)/ln(2) = 7.0112 ≈ 8 bits (round up)

(+128)10 needs 8-bits.

Remark 1: We need to round up because we don’t have a fractional number to count a
bits number, we need a natural number that directly succeed the fractional number.

Remark 2: If the calculator is not accessible to calculate the logarithm. The easiest way is
to convert the Decimal number to binary using SED, then count the bits. Or to look for the
power of 2 directly greeter than the Decimal number, and conclude the bits number.

2). To determine the number of bits (N) required to represent +45 and -128 in all encoding
schemes, we need to use the range formula for each scheme.

Unsigned Integer:

Comparing +45 to the range = [0,2N-1]
we get:

+45 ≤ 2N-1 → 46 ≤ 2N → N ≥ 6 (we take the smallest)
+45 requires N = 6-bits in UI

Comparing -128 to the range = [0,2N-1]
we observe:

Unsigned Integer can’t be negative.
128 can’t be represented in UI.

We take N = 6-bits in UI

Sign-Magnitude:

Comparing +45 to the range = [-(2N-1-1), +(2N-1-1)]
we get:

+45 ≤ 2N-1-1 → 46 ≤ 2N-1 → N-1 ≥ 6 → N ≥ 7 (we take the smallest)
+45 requires N = 7-bits in SM

Comparing -128 to the range = [-(2N-1-1), +(2N-1-1)]
we get:

-128 ≥ -(2N-1-1) → -128 ≥ -2N-1+1 → -129 ≥ -2N-1 → +129 ≤ +2N-1 → N-1 ≥ 8
 → N ≥ 9 (we take the smallest)

-128 requires N = 9-bits in SM

For both we take the bigger: N = 9-bits in SM

7

One’s Complement:

Comparing +45 to the range = [-(2N-1-1), +(2N-1-1)]
we get:

+45 ≤ 2N-1-1 → 46 ≤ 2N-1 → N-1 ≥ 6 → N ≥ 7 (we take the smallest)
+45 requires N = 7-bits in 1C

Comparing -128 to the range = [-(2N-1-1), +(2N-1-1)]
we get:

-128 ≥ -(2N-1-1) → -128 ≥ -2N-1+1 → -129 ≥ -2N-1 → +129 ≤ +2N-1 → N-1 ≥ 8
 → N ≥ 9 (we take the smallest)

-128 requires N = 9-bits in 1C

For both we take the bigger: N = 9-bits in 1C

Two’s Complement:

Comparing +45 to the range = [-(2N-1), +(2N-1-1)]
we get:

+45 ≤ 2N-1-1 → 46 ≤ 2N-1 → N-1 ≥ 6 → N ≥ 7 (we take the smallest)
+45 requires N = 7-bits

Comparing -128 to the range = [-(2N-1), +(2N-1-1)]
we get:

-128 ≥ -(2N-1) → -128 ≥ -2N-1 → +128 ≤ +2N-1 → N-1 ≥ 7
 → N ≥ 8 (we take the smallest)

-128 requires N = 8-bits

For both we take the bigger: N = 8-bits in 2C

Exercise 3:

1). Additions and subtractions on 8-bits:

1. (75)₁₀ + (37)₁₀ in 2C is (+75)₁₀ + (+37)₁₀:

Convert (75)₁₀ to 8-bits Two’s Complement by first converting (75)₁₀ to binary using SED
by 2. Knowing the number is positive, the binary don’t change in Two’s Complement:

Division Remainder
75 ÷ 2 = 37 1
37 ÷ 2 = 18 1
18 ÷ 2 = 9 0
9 ÷ 2 = 4 1
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

positive number (+) → sign = 0
(+75)₁₀ = (+1001011)₂ = [01001011]2C-8

8

Convert (+37)₁₀ to 8-bits Two’s Complement by first converting (37)₁₀ to binary using
SED by 2. Knowing the number is positive, the binary don’t change in Two’s
Complement:

Division Remainder
37 ÷ 2 = 18 1
18 ÷ 2 = 9 0
9 ÷ 2 = 4 1
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

positive number (+) → sign = 0
(+37)₁₀ = (+100101)₂ = [00100101]2C-8

The addition [01001011]2C-8 + [00100101]2C-8:

[01001011]2C-8 + [00100101]2C-8 = [01110000]2C-8

Decode [01110000]2C-8 to Decimal, knowing sign is positive is to convert (1110000)2 to
Decimal using PF:

sign = 0 → positve number (+)
(1x26) + (1x25) + (1x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (112)₁₀

[01110000]2C-8 = (+112)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition (75)₁₀ + (37)₁₀ = (112)₁₀,
produces a correct result. The result belongs to the range, there is no overflow.

2. (91)₁₀ + (53)₁₀ in 2C is (+91)₁₀ + (+53)₁₀:

Convert (91)₁₀ to 8-bits Two’s Complement by first converting (91)₁₀ to binary using SED
by 2. Knowing the number is positive, the binary don’t change in Two’s Complement:

Division Remainder
91 ÷ 2 = 45 1
45 ÷ 2 = 22 1
22 ÷ 2 = 11 0
11 ÷ 2 = 5 1
5 ÷ 2 = 2 1
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

positive number (+) → sign = 0
(+91)₁₀ = (+1011011)₂ = [01011011]2C-8

9

Convert (+53)₁₀ to 8-bits Two’s Complement by first converting (53)₁₀ to binary using
SED by 2. Knowing the number is positive, the binary don’t change in Two’s
Complement:

Division Remainder
53 ÷ 2 = 26 1
26 ÷ 2 = 13 0
13 ÷ 2 = 6 1
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

positive number (+) → sign = 0
(+53)₁₀ = (+110101)₂ = [00110101]2C-8

The addition [01011011]2C-8 + [00110101]2C-8:

[01011011]2C-8 + [00110101]2C-8 = [10010000]2C-8

Decode [10010000]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(10010000)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(10010000)2 __1C→ (01101111)2 __+1→ (01110000)2

(0x27) + (1x26) + (1x25) + (1x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (112)₁₀

[10010000]2C-8 = (-112)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition should be (91)₁₀ + (53)₁₀ =
(+144)₁₀, but produces (-112)₁₀ which is an incorrect result. The result don’t belongs to
the range, this is an overflow.

Remark 3: There is another way much simpler to detect overflows. In the 2 cases, if a
positive number is added to another positive number produces a negative number. Or the
case if a negative number added to another negative number produces a positive number.

3. (112)₁₀ - (65)₁₀ in 2C is (+112)₁₀ + (-65)₁₀:

Convert (112)₁₀ to 8-bits Two’s Complement by first converting (112)₁₀ to binary using
SED by 2. Knowing the number is positive, the binary don’t change in Two’s
Complement:

Division Remainder
112 ÷ 2 = 56 0
56 ÷ 2 = 28 0
28 ÷ 2 = 14 0
14 ÷ 2 = 7 0
7 ÷ 2 = 3 1
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

10

positive number (+) → sign = 0
(+112)₁₀ = (+1110000)₂ = [01110000]2C-8

Convert (-65)₁₀ to 8-bits Two’s Complement by first converting (+65)₁₀ to binary using
SED by 2. Knowing the number is negative, all the bits in the binary needs to be
inverted to get 1C, then adding +1:

Division Remainder
65 ÷ 2 = 32 1
32 ÷ 2 = 16 0
16 ÷ 2 = 8 0
8 ÷ 2 = 4 0
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

(+65)₁₀ = (+1000001)₂

negative number (-) → sign = 1
(01000001)2 __1C→ (10111110)2 __+1→ (10111111)2

(-65)₁₀ = [10111111]2C-8

The addition [01110000]2C-8 + [10111111]2C-8:

[01011011]2C-8 + [00110101]2C-8 = [00101111]2C-8

Remark 4: Like we discussed in lecture, the case of the additional bit in the addition of
Two’s Complement. In this case, the 9th bit crossed in the result. It is always ignored, and
doesn’t systematically mean an overflow.

Decode [00101111]2C-8 to Decimal, knowing sign is positive is to convert (00101111)2 to
Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (1x25) + (0x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (47)₁₀

[00101111]2C-8 = (+47)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the subtraction should be (112)₁₀ - (65)₁₀
= (+47)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

4. (-46)₁₀ - (101)₁₀ in 2C is (-46)₁₀ + (-101)₁₀:

Convert (-46)₁₀ to 8-bits Two’s Complement by first converting (+46)₁₀ to binary using
SED by 2. Knowing the number is negative, all the bits in the binary needs to be
inverted to get 1C, then adding +1:

11

Division Remainder
46 ÷ 2 = 23 0
23 ÷ 2 = 11 1
11 ÷ 2 = 5 1
5 ÷ 2 = 2 1
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

(+46)₁₀ = (+101110)₂

negative number (-) → sign = 1
(00101110)2 __1C→ (11010001)2 __+1→ (11010010)2

(-46)₁₀ = [11010010]2C-8

Convert (-101)₁₀ to 8-bits Two’s Complement by first converting (-101)₁₀ to binary using
SED by 2. Knowing the number is negative, all the bits in the binary needs to be
inverted to get 1C, then adding +1:

Division Remainder
101 ÷ 2 = 50 1
50 ÷ 2 = 25 0
25 ÷ 2 = 12 1
12 ÷ 2 = 6 0
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

(+101)₁₀ = (+1100101)₂

negative number (-) → sign = 1
(01100101)2 __1C→ (10011010)2 __+1→ (10011011)2

(-101)₁₀ = [10011011]2C-8

The addition [11010010]2C-8 + [10011011]2C-8:

[11010010]2C-8 + [10011011]2C-8 = [01101101]2C-8

Decode [01101101]2C-8 to Decimal, knowing sign is positive is to convert (01101101)2 to
Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (1x26) + (1x25) + (0x24) + (1x2³) + (1x2²) + (0x2¹) + (1x2⁰) = (109)₁₀

[01101101]2C-8 = (+109)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the subtraction should be (-46)₁₀ -
(101)₁₀ = (-147)₁₀, but produces (+109)₁₀ which is an incorrect result. The result don’t
belongs to the range, this is an overflow.

12

2). Let perform the 4 binary additions on 8-bits:

1. We need to interpret the binary numbers as encoded on 2C and UI:

1.1. The addition [00010100]8-bits + [00100111]8-bits = [00111011]8-bits interpreted as 2C:

Decoding [00010100]2C-8 to Decimal, knowing sign is positive is to convert (00010100)2

to Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (0x25) + (1x24) + (0x2³) + (1x2²) + (0x2¹) + (0x2⁰) = (20)₁₀

[00010100]2C-8 = (+20)₁₀

Decoding [00100111]2C-8 to Decimal, knowing sign is positive is to convert (00100111)2

to Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (1x25) + (0x24) + (0x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (39)₁₀

[00100111]2C-8 = (+39)₁₀

Decoding [00111011]2C-8 to Decimal, knowing sign is positive is to convert (00111011)2

to Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (1x25) + (1x24) + (1x2³) + (0x2²) + (1x2¹) + (1x2⁰) = (59)₁₀

[00111011]2C-8 = (+59)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition should be (+20)₁₀ + (+39)₁₀
= (+59)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

1.2. The addition [00010101]8-bits + [00100111]8-bits = [00111011]8-bits interpreted as UI, is the
same as the addition because the 3 numbers are positives.

[00010100]2C-8 = (+20)₁₀
[00100111]2C-8 = (+39)₁₀
[00111011]2C-8 = (+59)₁₀

13

Knowing the range of UI 8-bits is [0, +255], the addition should be (+20)₁₀ + (+39)₁₀ =
(+59)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

2.1. The addition [00010101]8-bits + [11100111]8-bits = [11111100]8-bits interpreted as 2C:

Decoding [00010101]2C-8 to Decimal, knowing sign is positive is to convert (00010101)2

to Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (0x25) + (1x24) + (0x2³) + (1x2²) + (0x2¹) + (1x2⁰) = (21)₁₀

[00010101]2C-8 = (+21)₁₀

Decoding [11100111]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(11100111)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(11100111)2 __1C→ (00011000)2 __+1→ (00011001)2

 (0x27) + (0x26) + (0x25) + (1x24) + (1x2³) + (0x2²) + (0x2¹) + (1x2⁰) = (25)₁₀

[11100111]2C-8 = (-25)₁₀

Decoding [11111100]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(11111100)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(11111100)2 __1C→ (00000011)2 __+1→ (00000100)2

 (0x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (1x2²) + (0x2¹) + (0x2⁰) = (4)₁₀

[11100111]2C-8 = (-4)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition should be (+21)₁₀ + (-25)₁₀ =
(-4)₁₀ produces a correct result. The result belongs to the range, there is no overflow.

2.2. The addition [00010101]8-bits + [11100111]8-bits = [11111100]8-bits interpreted as UI:

Decoding [00010101]UI-8 to Decimal, knowing sign is positive is the same as
[00010101]2C-8:

[00010101]UI-8 = (+21)₁₀

Decoding [11100111]UI-8 to Decimal, is to convert (11100111)2 to Decimal using PF:

(1x27) + (1x26) + (1x25) + (0x24) + (0x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (231)₁₀

[00010101]UI-8 = (+231)₁₀

Decoding [11111100]UI-8 to Decimal, is to convert (11111100)2 to Decimal using PF:

(1x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (0x2¹) + (0x2⁰) = (252)₁₀

14

[00010101]UI-8 = (+252)₁₀

Knowing the range of UI 8-bits is [0, +255], the addition should be (21)₁₀ + (231)₁₀ =
(252)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

Remark 5: Important point raised here confirming what we studied in lecture. Is that the
same adder produces correct result for the same binary number interpreted in 2 different
representations 2C and UI.

3.1. The addition [10000001]8-bits + [00010110]8-bits = [10010111]8-bits interpreted as 2C:

Decoding [10000001]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(10000001)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(10000001)2 __1C→ (01111110)2 __+1→ (01111111)2

 (0x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (127)₁₀

[10000001]2C-8 = (-127)₁₀

Decoding [00010110]2C-8 to Decimal, knowing sign is positive is to convert (00010110)2

to Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (0x26) + (0x25) + (1x24) + (0x2³) + (1x2²) + (1x2¹) + (0x2⁰) = (22)₁₀

[00010110]2C-8 = (+22)₁₀

Decoding [10010111]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(10010111)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(10010111)2 __1C→ (01101000)2 __+1→ (01101001)2

 (0x27) + (1x26) + (1x25) + (0x24) + (1x2³) + (0x2²) + (0x2¹) + (1x2⁰) = (105)₁₀

[10010111]2C-8 = (-105)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition should be (-127)₁₀ + (+22)₁₀
= (-105)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

3.2. The addition [10000001]8-bits + [00010110]8-bits = [10010111]8-bits interpreted as UI:

Decoding [10000001]UI-8 to Decimal, is to convert (10000001)2 to Decimal using PF:

(1x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (1x2⁰) = (129)₁₀

[00010101]UI-8 = (+129)₁₀

Decoding [00010110]UI-8 to Decimal, knowing sign is positive is the same as
[00010110]2C-8:

15

[00010110]UI-8 = (+22)₁₀

Decoding [10010111]UI-8 to Decimal, is to convert (10010111)2 to Decimal using PF:

(1x27) + (0x26) + (0x25) + (1x24) + (0x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (252)₁₀

[10010111]UI-8 = (+151)₁₀

Knowing the range of UI 8-bits is [0, +255], the addition should be (129)₁₀ + (22)₁₀ =
(151)₁₀ produces a correct result. The result belongs to the range, there is no
overflow.

4.1. The addition [11111111]8-bits + [10000000]8-bits = [01111111]8-bits interpreted as 2C:

Decoding [11111111]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(11111111)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(11111111)2 __1C→ (00000000)2 __+1→ (00000001)2

 (0x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (1x2⁰) = (127)₁₀

[11111111]2C-8 = (-1)₁₀

Decoding [10000000]2C-8 to Decimal, knowing sign is negative is to invert all bits in
(10000000)2 to get 1C, then adding +1 to convert it after to Decimal using PF:

sign = 1 → negative number (-)
(10000000)2 __1C→ (01111111)2 __+1→ (10000000)2

 (1x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (128)₁₀

[10000000]2C-8 = (-128)₁₀

Decoding [01111111]2C-8 to Decimal, knowing sign is positive is to convert (01111111)2 to
Decimal using PF:

sign = 0 → positive number (+)
(0x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (127)₁₀

[01111111]2C-8 = (+127)₁₀

Knowing the range of 2C 8-bits is [-128, +127], the addition should be (-1)₁₀ + (-128)₁₀ =
(-129)₁₀, but produces (+127)₁₀ which is an incorrect result. The result don’t belongs to
the range, this is an overflow.

4.2. The addition [11111111]8-bits + [10000000]8-bits = [01111111]8-bits interpreted as UI:

Decoding [11111111]UI-8 to Decimal, is to convert (11111111)2 to Decimal using PF:

(1x27) + (1x26) + (1x25) + (1x24) + (1x2³) + (1x2²) + (1x2¹) + (1x2⁰) = (129)₁₀

[11111111]UI-8 = (+255)₁₀

16

Decoding [10000000]UI-8 to Decimal, is to convert (10000000)2 to Decimal using PF:

(1x27) + (0x26) + (0x25) + (0x24) + (0x2³) + (0x2²) + (0x2¹) + (0x2⁰) = (128)₁₀

[10000000]UI-8 = (+128)₁₀

Decoding [01111111]UI-8 to Decimal, knowing sign is positive is the same as
[01111111]2C-8:

[01111111]UI-8 = (+127)₁₀

Knowing the range of UI 8-bits is [0, +255], the addition should be (255)₁₀ + (128)₁₀ =
(383)₁₀, but produces (127)₁₀ which is an incorrect result. The result don’t belongs to
the range, this is an overflow.

Exercise 4:

1. Binary Single Precision decoding to Decimal:

1.1. Decoding the 32-bit binary number to decimal: [41300000]FP-32

Convert the Single Precision from Hexadecimal to Binary:

[41300000]FP-32 = [0|100,0001,0|011,0000,0000,0000,0000,0000]FP-32

Extract Fields:
S (Sign bit) = 0 → Positive number (+)
Ebiased = 10000010 → Eb = 27 + 21 = (130)10
M = 011,0000,0000,0000,0000,0000 → M = 011 (zeros after the last 1 don’t count)

Calculating the Real Exponent:
Bias = (127)10 (constant value)
Ereal = Ebiased - Bias = 130 - 127 = 3 → Er = 3

Determine Significand:
Since the number is normalized, the significand is 1.M
Significand = (1.011)2

Calculating the final value:
The formula: FP = (-1)S x 1.M x 2Er

FP = + 1.011 x 23 = (1011)2

Using FP: (1011)2 = (1x2³) + (0x2²) + (1x2¹) + (1x2⁰) = (11)10

1.2. Decoding the 32-bit binary number to decimal: [BE500000]FP-32

Convert the Single Precision from Hexadecimal to Binary:

[BE500000]FP-32 = [1|011,1110,0|101,0000,0000,0000,0000,0000]FP-32

Extract Fields:
S (Sign bit) = 1 → Negative number (-)

17

Ebiased = 01111100 → Eb = 26 + 25 + 24 + 23 + 22 = (124)10
M = 101,0000,0000,0000,0000,0000 → M = 101 (zeros after the last 1 don’t count)

Calculating the Real Exponent:
Bias = (127)10 (constant value)
Ereal = Ebiased - Bias = 124 - 127 = -3 → Er = -3

Determine Significand:
Since the number is normalized, the significand is 1.M
Significand = (1.101)2

Calculating the final value:
The formula: FP = (-1)S x 1.M x 2Er

FP = -1.101 x 2-3 = (0.001101)2

Using FP.FPF: (1.101)2 x 2-3 = ((1x20) + (1x2-1) + (0x2-2) + (1x2-3)) x 2-3

 = (0.203125)10

2. Decimal to Binary Single Precision encoding:

2.1. Encoding the decimal (+15.25)₁₀ to Single Precision 32-bit binary number:

Converting the Number to Binary:

First, convert the integer part (15)₁₀ to binary using SED:
Division Remainder

15 ÷ 2 = 7 1
7 ÷ 2 = 3 1

 3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

(15)₁₀ = (1111)₂
Next, convert the fractional part (0.125)₁₀ to a binary fraction using SM:

Multiplication Integer part
0.25 x 2 = 0.5 0
0.5 x 2 = 1.0 1

 (0.25)₁₀ = (0.01)₂
Combine the integer and fractional parts: (+15.25)₁₀ = (+1111.01)₂

Determining the Sign bit (S):

The number +1111.01 is positive → S=0

Normalizing the Binary Number:

The binary number must be converted to the format 1.M×2Ereal.
(1111.01)2​ = 1.11101×23

Real Exponent: Er = 3
The Mantissa: M = 11101

Calculating the Biased Exponent (Eb):

We have: Bias = 127.
The Exponent formula:

Er = Eb - Bias → Eb = Er + Bias

18

Eb = 3 + 127 = (130)10
Now, we convert Eb to its 8-bit binary representation using SED:

Division Remainder
130 ÷ 2 = 65 0
65 ÷ 2 = 32 1

 32 ÷ 2 = 16 0
16 ÷ 2 = 8 0
8 ÷ 2 = 4 0
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

(130)₁₀ = (10000010)₂
Eb = [10000010]8-bits

Assembling the Final 32-bit Representation:

We have the 3 fields in a 32-bits FP representation organized as follows:
Sing bit (1-bit) | Biased Exponent (8-bits) | Mantissa (23-bits)

Binary representation: [0|100,0001,0|111,0100,0000,0000,0000,0000]FP-32
In hexadecimal: [41740000]FP-32

Remark 6: It is impracticable and difficult to work with 32 digits in the binary
representation. This why it become very convenient to use Hexadecimal. That confirms
what we learned in chapter 2 about the advantage of using of Octal and Hexadecimal.

2.2. Encoding the decimal (-0.0625)₁₀ to Single Precision 32-bit binary number:

Converting the Number to Binary:

Convert the fractional part (0.0625)₁₀ to a binary fraction using SM:
Multiplication Integer part

0.0625 x 2 = 0.125 0
0.125 x 2 = 0.25 0

0.25 x 2 = 0.5 0
0.5 x 2 = 1.0 1

 (-0.0625)₁₀ = (-0.001)₂

Determining the Sign bit (S):

The number -0.001 is negative → S=1

Normalizing the Binary Number:

The binary number must be converted to the format 1.M×2Ereal.
(-0.0001)2​ = -1×2-4

Real Exponent: Er = -4
The Mantissa: M = 0

Calculating the Biased Exponent (Eb):

We have: Bias = 127.
The Exponent formula:

Er = Eb - Bias → Eb = Er + Bias
Eb = -4 + 127 = (123)10

19

Now, we convert Eb to its 8-bit binary representation using SED:
Division Remainder

123 ÷ 2 = 61 1
61 ÷ 2 = 30 1

 30 ÷ 2 = 15 0
15 ÷ 2 = 7 1
7 ÷ 2 = 3 1
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1

(124)₁₀ = (1111011)₂
Eb = [01111011]8-bits

Assembling the Final 32-bit Representation:

We have the 3 fields in a 32-bits FP representation organized as follows:
Sing bit (1-bit) | Biased Exponent (8-bits) | Mantissa (23-bits)

Binary representation: [1|011,1101,1|000,0000,0000,0000,0000,0000]FP-32
In hexadecimal: [BD800000]FP-32

3. Binary Double Precision decoding to Decimal of the 64-bits: [4035000000000000]FP64

Knowing that Ne = 11-bits and Nm = 52-bits, and the Bias = 1023.

Convert the Double Precision from Hexadecimal to Binary:

[4035000000000000]FP-64 = [0|100,0000,0011|0101,0000,0000,0000,0000,
 0000,0000,0000,00000000,0000,0000,0000]FP-64

Extract Fields:
S (Sign bit) = 0 → Positive number (+)
Ebiased = 100,0000,0011 → Eb = 210 + 21 + 20 = (1027)10
M = 0101,0000,0000,·······,0000,0000 → M = 0101(zeros after the last 1 don’t count)

Calculating the Real Exponent:
Bias = (1023)10 (constant value)
Ereal = Ebiased - Bias = 1027 - 1023 = 4 → Er = 4

Determine Significand:
Since the number is normalized, the significand is 1.M
Significand = (1.0101)2

Calculating the final value:
The formula: FP = (-1)S x 1.M x 2Er

FP = + 1.0101 x 24 = (10101)2

Using FP: (10101)2 = (1x24) + (0x2³) + (1x2²) + (0x2¹) + (1x2⁰) = (21)10

20

4. Decimal encoding to Binary Double Precision 64-bits the decimal (-4.75)₁₀:

Converting the Number to Binary:
First, convert the integer part (4)₁₀ to binary using SED:

Division Remainder
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

(4)₁₀ = (100)₂
Next, convert the fractional part (0.75)₁₀ to a binary fraction using SM:

Multiplication Integer part
0.75 x 2 = 1.5 1
0.5 x 2 = 1.0 1

 (0.75)₁₀ = (0.11)₂
Combine the integer and fractional parts: (-4.75)₁₀ = (-100.11)₂

Determining the Sign bit (S):

The number -100.11 is negative → S=1

Normalizing the Binary Number:

The binary number must be converted to the format 1.M×2Ereal.
(-100.11)2​ = -1.0011×22

Real Exponent: Er = 2
The Mantissa: M = 0011

Calculating the Biased Exponent (Eb):

We have: Bias = 1023.
The Exponent formula:

Er = Eb - Bias → Eb = Er + Bias
Eb = 2 + 1023 = (1025)10

Now, we convert Eb to its 11-bit binary representation using SED:
Division Remainder

1025 ÷ 2 = 512 1
512 ÷ 2 = 256 0
256 ÷ 2 = 128 0
128 ÷ 2 = 64 0
64 ÷ 2 = 32 0

 32 ÷ 2 = 16 0
16 ÷ 2 = 8 0
8 ÷ 2 = 4 0
4 ÷ 2 = 2 0
2 ÷ 2 = 1 0
1 ÷ 2 = 0 1

(1025)₁₀ = (100,0000,0001)₂
Eb = [100,0000,0001]11-bits

Assembling the Final 64-bit Representation:

We have the 3 fields in a 32-bits FP representation organized as follows:
Sing bit (1-bit) | Biased Exponent (11-bits) | Mantissa (52-bits)

Binary representation: [1|100,0000,0001|0011,0000,·······,0000,0000]FP-64
In hexadecimal: [C013,0000,0000,0000]FP-64

21

5. Binary Simple Precision decoding to Decimal of the 32-bits: [00700000]FP32

Convert the Double Precision from Hexadecimal to Binary:

[00700000]FP-32 = [0|000,0000,0|111,0000,0000,0000,0000,0000]FP-32

Extract Fields:
S (Sign bit) = 0 → Positive number (+)
Ebiased = 00000000 → 0 = (0)10

M = 111,0000,0000,0000,0000,0000 → M = 111 (zeros after the last 1 don’t count)

It is important to notice Eb = 0 and M ≠ 0. This means the number is Denormalized.

Emin = Eb-Bias = 1-Bias

Real minimum exponent:
Bias = (127)10 (constant value)
Emin = 1 - Bias = 1 - 127 = -126 → Emin = -126 (constant value too)

Determine Significand:
Since the number is Denormalized, the significand is 0.M
Significand = (0.111)2

Calculating the final value using the Denormalized formula:
The formula: FP = (-1)S x 0.M x 2min

FP = + 0.111 x 2-126 = (1.11)2 x 2-127

Using FP: (1.11)2 = ((1x20) + (0x2-1) + (1x2-2)) x 2-127 = (1.75)10 x 5.87747 x10-39

FP = 1.02855 x10-38

Remark 7: In this course, it is established to take 5 digits after the fractional dot for
maximum precision.

6. Decimal encoding to Binary Double Precision 64-bits the decimal (2.938736 x10-39)₁₀:

This number seems too small, it is preferable to check if it is smaller than 2Emin:
Emin = -126 (It is a constant)
2-126 = 1.17549 x 10-38 > 2.938736 x10-39 → use of Denormalized scheme.

Remark 8: You can observe that it become very easy to compare fractional numbers
represented in Scientific Notation directly by comparing their Exponents. This why IEEE-
754 uses biased Exponent to represent negative numbers instead of MS, 1C, or 2C.

Determining the Sign bit (S):

The number +2.938736 x10-39 is positive → S=0

Getting the value of the Significand:

We have: FP = (-1)S x 0.M x 2Emin → +2.938736 x10-39 = 0.M x 2-126

→ 0.M = 2.938736 x10-39 / 2-126

→ 0.M = (0.25)10

22

Converting the Number to Binary:
Convert the fractional part (0.25)₁₀ to a binary fraction using SM:

Multiplication Integer part
0.25 x 2 = 0.5 0
0.5 x 2 = 1.0 1

(0.25)₁₀ = (0.01)₂

Getting the value of M:
0.M = (0.25)10 = (0.01)2 → M = 01

Assembling the Final 32-bit Denormalized Representation (knowing that Eb = 0):

We have the 3 fields in a 32-bits FP representation organized as follows:
Sing bit (1-bit) | Biased Exponent (8-bits) = 0 | Mantissa (23-bits)

Binary representation: [0|000,0000,0|010,0000,0000,0000,0000,0000]FP-32
In hexadecimal: [00200000]FP-32

Exercise 5:

1). Encoding the sentence "Salamou Alaykoum" into its 8-bit ASCII hexadecimal
representation, we need to use the Extended ASCII table. We have to find the 8-bit ASCII
hexadecimal value trough the table for each character:

"Salamou "
S: 0x53 a: 0x61 l: 0x6C a: 0x61 m: 0x6D o: 0x6F u: 0x75 " ": 0x20

"Alaykoum"
A: 0x41 l: 0x6C a: 0x61 y: 0x79 k: 0x6B o: 0x6F u: 0x75 m: 0x6D

Encoded Sentence in 8-bit ASCII Hexadecimal:

[53 61 6C 61 6D 6F 75 20 41 6C 61 79 6B 6F 75 6D]ASCII

2). Decoding the following sequence to reveal the original sentence, is practically
the opposite operation. Using the ASCII table to find the character behind each 2
hexadecimal digits (8-bits):

[59 65 61 72 20 32 30 32 35]ASCII

59: Y 65: e 61: a 72: r 20: " "
32: 2 30: 0 32: 2 35: 5

Decoded sentence: "Year 2025"

Remark 9: In this exercise we were forced to use Hexadecimal for a small sentences of
ASCII characters, because using binary would be very tedious. For example the sentence
"Salamou Alaykoum" would need 8-bits by 16 characters, 128-bits to write by hand. This is
why Hexadecimal is preferable than binary for humans use.

