

Machine Structures 1 exam solution

Exercise 1 : (4 points)

- 1. Examples of output devices:** Monitor (Display) and Printer. (Others include Speakers and Headphones). **(1 point)**
- 2. Bits for a hexadecimal digit:** **4 bits.** **(1 point)**
- 3. Definition of a bit:** The absolute smallest unit of data in a computer, representing one of two states: **0** ("off" or low voltage) or **1** ("on" or high voltage). **(1 point)**
- 4. Definition of a "Minterm":** A product (AND term) consisting of all variables of a function, in either true or complemented form. **(1 point)**

Exercise 2 : (5 points)

- Convert **(1024)₁₀** to binary using Successive Euclidean Division by 2 : **(1 point)**

Division	Remainder
$1024 \div 2 = 512$	0
$512 \div 2 = 256$	0
$256 \div 2 = 128$	0
$128 \div 2 = 64$	0
$64 \div 2 = 32$	0
$32 \div 2 = 16$	0
$16 \div 2 = 8$	0
$8 \div 2 = 4$	0
$4 \div 2 = 2$	0
$2 \div 2 = 1$	0
$1 \div 2 = 0$	1

$$(1024)_{10} = (10\ 000\ 000\ 000)_2$$

- Convert **(1100111010)₂** to hexadecimal using 4-bits equivalence method: **(1 point)**

$$(0011\mid 0011\mid 1010)_2 = (3\mid 3\mid A)_{16}$$

$$(1100111010)_2 = (33A)_{16}$$

3. Convert $(A.C)_{16}$ to decimal.

First, convert the integer part $(A)_{16}$ to decimal using Polynomial Formula with base-16: **(0.5 point)**

$$\begin{aligned}(A)_{16} &= 10 \times 16^0 \\ &= 10\end{aligned}$$

$$(A)_{16} = (10)_{10}$$

Next, convert the fractional part $(0.C)_{16}$ to decimal using Fractional Polynomial Formula with base-16: **(0.5 point)**

$$\begin{aligned}(0.C)_{16} &= 12 \times 16^{-1} \\ &= 12 \times (1/16) \\ &= 12 / 16 \\ &= 3 / 4 \\ &= 0.75\end{aligned}$$

$$(0.C)_{16} = (0.75)_{10}$$

Combine the integer and fractional parts: $(A.C)_{16} = (10.75)_{10}$

4. Determining the unknown base x solving the following equation $(22)_x = (16)_{10}$

To solve this, we need to convert $(22)_x$ to base-10. **(1 point)**

$$\begin{aligned}(22)_x &= 2 \cdot x^1 + 2 \cdot x^0 \\ (22)_x &= 2x + 2\end{aligned}$$

Now we set this equal to $(16)_{10}$:

$$\begin{aligned}2x + 2 &= 16 \\ 2x &= 16 - 2 \\ x &= 14 / 2 \\ x &= 7\end{aligned}$$

So, the unknown base $x = 7$.

5. Binary Multiplication: (1 point)

$$(101)_2 \times (110)_2 = (11110)_2$$

$$\begin{array}{r} 101 \\ \times 110 \\ \hline 000 \\ + 101 \\ + 101 \\ \hline 11110 \end{array}$$

Exercise 3 : (5 points)

1. Decoding the 4-bits binary value $[1111]_{4\text{-bits}}$:

- Decode $[1111]_{\text{UL-4}}$ to Decimal is to convert $(1111)_2$ to Decimal using PF: (0.25 point)
 $(1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 8 + 4 + 2 + 1 = (15)_{10}$
 $[1111]_{\text{UL-4}} = (15)_{10}$
- Decode $[1111]_{\text{SM-4}}$ to Decimal is to convert the magnitude $(111)_2$ to Decimal using PF then adding sign: (0.25 point)

sign = 1 → negative number (-)
 $(1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 4 + 2 + 1 = (7)_{10}$

$[1111]_{\text{SM-4}} = (-7)_{10}$

- Decode $[1111]_{\text{1C-4}}$ to Decimal, knowing sign is negative is to invert all bits in $(1111)_2$ then convert it to Decimal using PF: (0.25 point)

sign = 1 → negative number (-)
 $(1111)_2 \xrightarrow{\text{invert}} (0000)_2$
 $(0 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 0 = (0)_{10}$

$[1111]_{\text{1C-4}} = (0)_{10}$

- Decode $[1111]_{\text{2C-4}}$ to Decimal, knowing sign is negative is to invert all bits in $(1111)_2$ to get 1C, then adding +1 to convert it after to Decimal using PF: (0.25 point)

sign = 1 → negative number (-)
 $(1111)_2 \xrightarrow{1C} (0000)_2 \xrightarrow{+1} (0001)_2$
 $(0 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 1 = (1)_{10}$

$[1111]_{\text{2C-4}} = (-1)_{10}$

2. $(-64)_{10} - (65)_{10}$ in 2C is $(-64)_{10} + (-65)_{10}$:

- Convert $(-64)_{10}$ to 8-bits Two's Complement by first converting $(+64)_{10}$ to binary using SED by 2. Knowing the number is negative, all the bits in the binary needs to be inverted to get 1C, then adding +1: (0.5 point)

Division	Remainder
$64 \div 2 = 32$	0
$32 \div 2 = 16$	0
$16 \div 2 = 8$	0
$8 \div 2 = 4$	0
$4 \div 2 = 2$	0
$2 \div 2 = 1$	0
$1 \div 2 = 0$	1

$(+64)_{10} = (+1000000)_2$

negative number (-) → sign = 1
 $(01000000)_2 \xrightarrow{-1C} (10111111)_2 \xrightarrow{-+1} (11000000)_2$
 $(-64)_{10} = [11000000]_{2C-8}$

- Convert $(-65)_{10}$ to 8-bits Two's Complement by first converting $(+65)_{10}$ to binary using SED by 2. Knowing the number is negative, all the bits in the binary needs to be inverted to get 1C, then adding +1: (0.5 point)

Division	Remainder
$65 \div 2 = 32$	1
$32 \div 2 = 16$	0
$16 \div 2 = 8$	0
$8 \div 2 = 4$	0
$4 \div 2 = 2$	0
$2 \div 2 = 1$	0
$1 \div 2 = 0$	1

$$(+65)_{10} = (+1000001)_2$$

negative number (-) → sign = 1
 $(01000001)_2 \xrightarrow{-1C} (10111110)_2 \xrightarrow{-+1} (10111111)_2$
 $(-65)_{10} = [10111111]_{2C-8}$

- The addition $[11000000]_{2C-8} + [10111111]_{2C-8}$: (0.5 point)

$$\begin{array}{r}
 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
 + & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
 \hline
 = & \text{X} & 0 & 1 & 1 & 1 & 1 & 1
 \end{array}$$

$$[11000000]_{2C-8} + [10111111]_{2C-8} = [01111111]_{2C-8}$$

- Decode $[01111111]_{2C-8}$ to Decimal, knowing sign is positive is to convert $(01111111)_2$ to Decimal using PF:

$$\begin{aligned}
 \text{sign} = 0 &\rightarrow \text{positive number (+)} \\
 (0 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) &= (127)_{10}
 \end{aligned}$$

$$[01111111]_{2C-8} = (+127)_{10}$$

- Knowing the range of 2C 8-bits is $[-128, +127]$, the subtraction should be $(-64)_{10} - (65)_{10} = (-129)_{10}$ produces an **incorrect result**. The result don't belongs to the range, there is an **overflow**. (0.5 point)

3. Encoding the decimal $(+25.75)_{10}$ to Single Precision 32-bit binary number:

- Converting the Number to Binary: (0.5 point)

First, convert the integer part $(25)_{10}$ to binary using SED:

Division	Remainder
$25 \div 2 = 12$	1
$12 \div 2 = 6$	0
$6 \div 2 = 3$	0
$3 \div 2 = 1$	1
$1 \div 2 = 0$	1

$$(25)_{10} = (11001)_2$$

Next, convert the fractional part $(0.75)_{10}$ to a binary fraction using SM:

Multiplication	Integer part
$0.75 \times 2 = 1.5$	1
$0.5 \times 2 = 1.0$	1

$$(0.75)_{10} = (0.11)_2$$

Combine the integer and fractional parts: $(+25.75)_{10} = (+11001.11)_2$

- Determining the Sign bit (S): (0.25 point)

The number +1111.01 is positive $\rightarrow S=0$

- Normalizing the Binary Number: (0.25 point)

The binary number must be converted to the format $1.M \times 2^{E_{\text{real}}}$.

$$(11001.11)_2 = 1.100111 \times 2^4$$

Real Exponent: $E_r = 4$

The Mantissa: $M = 100111$

- Calculating the Biased Exponent (E_b): (0.5 point)

We have: **Bias = 127**.

The Exponent formula:

$$E_r = E_b - \text{Bias} \rightarrow E_b = E_r + \text{Bias}$$

$$E_b = 4 + 127 = (131)_{10}$$

Now, we convert E_b to its 8-bit binary representation using SED:

Division	Remainder
$131 \div 2 = 65$	1
$65 \div 2 = 32$	1
$32 \div 2 = 16$	0
$16 \div 2 = 8$	0
$8 \div 2 = 4$	0
$4 \div 2 = 2$	0
$2 \div 2 = 1$	0
$1 \div 2 = 0$	1

$$(131)_{10} = (10000011)_2$$

$$E_b = [10000011]_{8\text{-bits}}$$

- Assembling the Final 32-bit Representation: (0.5 point)

We have the 3 fields in a 32-bits FP representation organized as follows:

Sing bit (1-bit) | Biased Exponent (8-bits) | Mantissa (23-bits)

Binary representation: $[0|100,0001,1|100,1110,0000,0000,0000,0000]_{FP-32}$

In hexadecimal: $[41CE0000]_{FP-32}$

Exercise 4 : (6 points)

- Reduction of the Boolean expression: $A + \bar{A}B$ (1 point)

$A + \bar{A}B$
$\bar{A}\bar{B} + AB + \bar{A}B$
$(A\bar{B} + AB) + (AB + \bar{A}B)$
$A + B$

- The Truth Table of the function: $F(A,B,C) = \bar{A}\bar{B} + \bar{C}$ (1 point)

A	B	C	$\bar{A}\bar{B} + \bar{C}$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- The PoS form of the previous Truth Table is: $F(A,B,C) = \bar{A} + \bar{B} + \bar{C}$ (1 point)

- Quine-MacCluskey method on the Truth Table:

- Stage 1: (1.5 point)

Minterms	Pass 1	Pass 2
(0) 000 ✓	(0,1) 00- ✓	(0,1,2,3) 0-- x
(1) 001 ✓	(0,2) 0-0 ✓	(0,1,4,5) -0- x
(2) 010 ✓	(0,4) -00 ✓	(0,2,1,3) 0--
(4) 100 ✓	(1,3) 0-1 ✓	(0,2,4,6) --0 x
(3) 011 ✓	(1,5) -01 ✓	(0,4,1,5) -0-
(5) 101 ✓	(2,3) 01- ✓	(0,4,2,6) --0
(6) 110 ✓	(2,6) -10 ✓	
	(4,5) 10- ✓	
	(4,6) 1-0 ✓	

Stage 2: (0.5 point)

Minterm Implicant \	(0) 000	(1) 001	(2) 010	(3) 011	(4) 100	(5) 101	(6) 110
(0,1,2,3) 0--	x	x	x	x			
(0,1,4,5) -0-	x	x			x	x	
(0,2,4,6) --0	x		x		x		x

$$EPI = \{(0,1,2,3) 0--, (0,1,4,5) -0-, (0,2,4,6) --0\}.$$

$$EPI_{Minterm} = \{(0)000, (1)001, (2)010, (3)011, (4)100, (5)101, (6)110\}.$$

all Minterms are covered. **(0.5 point)**

The final result : $F(A,B,C) = \overline{A} + \overline{B} + \overline{C}$ **(0.5 point)**