

Machine Structures 1 exam solution

Exercise 1 : (4 points)

1. Definition of Computer Science: It is the study of the theoretical foundations of information and computation, and the practical techniques for using, designing, and building computer systems to process, store, and communicate information. (1 point)

2. Bases: (1 point)

Decimal: **Base-10**
Binary: **Base-2**
Octal: **Base-8**
Hexadecimal: **Base-16**

3. Logical OR symbol: It is symbolized by the **plus sign (+)**. (1 point)

4. Range for Unsigned Integers (N bits): The range is $[0, 2^N - 1]$. (1 point)

Exercise 2 : (5 points)

1. Convert $(371)_8$ to hexadecimal going through binary: (1 point)

$$(3 \ 7 \ 1)_8 = (011 \mid 111 \mid 001)_2 = (0 \mid 1111 \mid 1001)_2 = (0 \ F \ 9)_{16}$$

$$(371)_8 = (F9)_{16}$$

2. Convert $(0.8125)_{10}$ to binary fraction using Successive Multiplication by 2: (1 point)

Multiplication	Integer part
$0.8125 \times 2 = 1.625$	1
$0.625 \times 2 = 1.250$	1
$0.25 \times 2 = 0.500$	0
$0.5 \times 2 = 1.000$	1

$$(0.8125)_{10} = (0.1101)_2$$

3. Determining the unknown base x solving the following equation $(101)_x = (37)_{10}$ (1 point)

To solve this, we need to convert $(101)_x$ to base-10.

$$\begin{aligned}(101)_x &= 1 \cdot x^2 + 0 \cdot x^1 + 1 \cdot x^0 \\ (101)_x &= x^2 + 0 + 1 \\ (101)_x &= x^2 + 1\end{aligned}$$

Now we set this equal to $(37)_{10}$:

$$\begin{aligned}
 x^2 + 1 &= 37 \\
 x^2 &= 37 - 1 \\
 x^2 &= 36 \\
 x &= \sqrt{36} \\
 x &= 6 \text{ (Since bases are positive)}
 \end{aligned}$$

So, the unknown base $x = 6$.

4. Binary Subtraction: (1 point)

$$(1010)_2 - (0111)_2 = (0011)_2$$

$$\begin{array}{r}
 10110 \\
 - 0111 \\
 \hline
 0011
 \end{array}$$

5. Convert $(2047)_{10}$ to hexadecimal using Successive Euclidean Division by 16: (1 point)

Division	Remainder
$2047 \div 16 = 256$	15(F)
$127 \div 16 = 7$	15(F)
$7 \div 16 = 0$	7

$$(2047)_{10} = (7FF)_{16}$$

Exercise 3 : (5 points)

1. Encoding on 6-bits the decimal: $(-15)_{10}$

- Convert $(-15)_{10}$ to binary using SED by 2: (1 point)

Division	Remainder
$15 \div 2 = 7$	1
$7 \div 2 = 3$	1
$3 \div 2 = 1$	1
$1 \div 2 = 0$	1

$$(-15)_{10} = (-1111)_2$$

- Convert $(-1111)_2$ to UI, SM, 1C, 2C: (1 point)

Fixed-Width	Decimal values	Binary value	Unsigned Integer	Sign-Magnitude (MSB Sign bit)	One's Complement (Invert all bits)	Two's Complement (1C +1)
6-bits	-15	-1111	N.A.	$[101111]_{SM-6}$	$[110000]_{1C-6}$	$[110001]_{2C-6}$

2. Decoding the 32-bit binary number to decimal: $[C1200000]_{FP-32}$

- Convert the Single Precision from Hexadecimal to Binary:

$$[C1200000]_{FP-32} = [1|100,0001,0|010,0000,0000,0000,0000,0000]_{FP-32}$$

- Extract Fields: (0.5 point)

S (Sign bit) = 0 → Negative number (-)
 $E_{biased} = 10000010 \rightarrow E_b = 2^7 + 2^1 = (130)_{10}$
 $M = 010,0000,0000,0000,0000 \rightarrow M = 01$

- Calculating the Real Exponent: (0.5 point)

Bias = $(127)_{10}$ (constant value)
 $E_{real} = E_{biased} - Bias = 130 - 127 = 3 \rightarrow E_r = 3$

- Determine Significand: (0.5 point)

- Since the number is normalized, the significand is 1.M
- Significand = $(1.01)_2$

- Calculating the final value: (0.5 point)

The formula: $FP = (-1)^S \times 1.M \times 2^{E_r}$
 $FP = -1.01 \times 2^3 = (-1010)_2$
Using FP: $(1010)_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = (-10)_{10}$

3. Encoding the word "Binary" into its 8-bit ASCII hexadecimal representation: (1 point)

[42 69 6E 61 72 79]ASCII

Exercise 4 : (6 points)

1. The Truth Table of the function: $F(A,B,C) = (A \oplus B) + \bar{C}$ (2 point)

A	B	C	$(A \oplus B) + \bar{C}$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

2. The Truth Table of the function $\Sigma(2,3,5,7,11,13)$: (1 point)

A	B	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

The SoP form of the Truth Table is: (1 point)

$$F(A,B,C,D) = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}C\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + A\overline{B}C\overline{D} + AB\overline{C}\overline{D}$$

3. Karnaugh map method using SoP: (1 point)

		00	01	11	10	
		00	01	11	10	
CD	AB	00	0	0	0	0
		01	0	1	1	0
CD	AB	11	1	1	0	1
		10	1	0	0	0

The SoP reduction is: $F(A,B,C,D) = B\overline{C}\overline{D} + \overline{B}C\overline{D} + \overline{A}BD + \overline{A}\overline{B}C$ (1 point)