

Machine Structures 1 exam solution

Exercise 1 : (4 points)

1. **RAM: Random Access Memory.** (1 point)
2. **Hexadecimal symbols (10–15):** The letters **A, B, C, D, E, and F.** (1 point)
3. **Bits in a Byte: 8 bits.** (1 point)
4. **Result of A + 1 is: 1** (1 point)

Exercise 2 : (5 points)

1. Convert **(A2F)₁₆** to octal going through binary: (1 point)

$$(A\ 2\ F)_{16} = (1010\ | 0010\ | 1111)_2 = (101\ | 000\ | 101\ | 111)_2 = (5\ 0\ 5\ 7)_8$$

$$(A2F)_{16} = (5057)_8$$

2. Convert the fractional part **(0.4375)₁₀** to hexadecimal using Successive Multiplication by 16: (1 point)

Multiplication	Integer part
$0.4375 \times 16 = 7.0$	7

$$(0.4375)_{10} = (0.7)_{16}$$

3. Binary Addition: (1 point)

$$(1101)_2 + (1011)_2 = (11000)_2$$

$$\begin{array}{r} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ + & 1 & 0 & 1 & 1 \\ \hline = & 1 & 1 & 0 & 0 & 0 \end{array}$$

4. Convert **(E5)₁₆** to decimal using Polynomial Formula with base-16: (1 point)

$$\begin{aligned} (Ex16^1) + (5x16^0) &= (14x16) + (5x1) \\ &= 224 + 5 = (229)_{10} \end{aligned}$$

$$(E5)_{16} = (229)_{10}$$

5. The multiplication by the power of the base is a shift in the position of the fractional point: (1 point)

- $(1011.01)_2 \times 2^3 = (1011.01)_2 \times (1000)_2 = (1011010)_2$

Exercise 3 : (5 points)

1. $(-128)_{10} - (1)_{10}$ in 2C is $(-128)_{10} + (-1)_{10}$:

- Convert $(-128)_{10}$ to 8-bits Two's Complement by first converting $(+128)_{10}$ to binary using SED by 2. Knowing the number is negative, all the bits in the binary needs to be inverted to get 1C, then adding +1: (0.5 point)

Division	Remainder
$128 \div 2 = 64$	0
$64 \div 2 = 32$	0
$32 \div 2 = 16$	0
$16 \div 2 = 8$	0
$8 \div 2 = 4$	0
$4 \div 2 = 2$	0
$2 \div 2 = 1$	0
$1 \div 2 = 0$	1

$$(+128)_{10} = (+10000000)_2$$

negative number (-) \rightarrow sign = 1

$$(10000000)_2 \xrightarrow{-1C} (0111111)_2 \xrightarrow{+1} (10000000)_2$$

$$(-128)_{10} = [10000000]_{2C-8}$$

- Convert $(-1)_{10}$ to 8-bits Two's Complement by first converting $(+1)_{10}$ to binary using SED by 2. Knowing the number is negative, all the bits in the binary needs to be inverted to get 1C, then adding +1: (0.5 point)

Division	Remainder
$1 \div 2 = 0$	1

$$(+1)_{10} = (+1)_2$$

negative number (-) \rightarrow sign = 1

$$(00000001)_2 \xrightarrow{-1C} (11111110)_2 \xrightarrow{+1} (11111111)_2$$

$$(-1)_{10} = [11111111]_{2C-8}$$

- The addition $[10000000]_{2C-8} + [11111111]_{2C-8}$: (0.5 point)

$$\begin{array}{r}
 & 1 \\
 & 0 0 0 0 0 0 0 0 \\
 + & 1 1 1 1 1 1 1 1 \\
 \hline
 = & \text{X} | 0 1 1 1 1 1 1 1
 \end{array}$$

$$[10000000]_{2C-8} + [11111111]_{2C-8} = [01111111]_{2C-8}$$

- Decode $[01111111]_{2C-8}$ to Decimal, knowing sign is positive is to convert $(01111111)_2$ to Decimal using PF:

sign = 0 → positive number (+)

$$(0 \times 2^7) + (1 \times 2^6) + (1 \times 2^5) + (1 \times 2^4) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = (127)_{10}$$

$$[01111111]_{2C-8} = (+127)_{10}$$

- Knowing the range of 2C 8-bits is $[-128, +127]$, the subtraction should be $(-128)_{10} - (1)_{10} = (-129)_{10}$ produces an **incorrect result**. The result don't belongs to the range, there is **an overflow**. (0.5 point)

- Encoding the decimal $(-0.125)_{10}$ to Single Precision 32-bit binary number:

- Converting the Number to Binary: (0.5 point)

Convert the fractional part $(0.125)_{10}$ to a binary fraction using SM:

Multiplication	Integer part
$0.125 \times 2 = 0.25$	0
$0.25 \times 2 = 0.5$	0
$0.5 \times 2 = 1.0$	1

$$(0.125)_{10} = (0.001)_2$$

Combine the integer and fractional parts: $(-0.125)_{10} = (-0.001)_2$

- Determining the Sign bit (S): (0.25 point)

The number -0.001 is negative → **S=1**

- Normalizing the Binary Number: (0.25 point)

The binary number must be converted to the format $1.M \times 2^{E_{real}}$.

$$(-0.001)_2 = -1 \times 2^{-3}$$

Real Exponent: **$E_r = -3$**

The Mantissa: **$M = 0$**

- Calculating the Biased Exponent (E_b): (0.5 point)

We have: **Bias = 127**.

The Exponent formula:

$$E_r = E_b - \text{Bias} \rightarrow E_b = E_r + \text{Bias}$$

$$E_b = -3 + 127 = (124)_{10}$$

Now, we convert E_b to its 8-bit binary representation using SED:

Division	Remainder
$124 \div 2 = 62$	0
$62 \div 2 = 31$	0
$31 \div 2 = 15$	1
$15 \div 2 = 7$	1
$7 \div 2 = 3$	1
$3 \div 2 = 1$	1
$1 \div 2 = 0$	1

$$(124)_{10} = (01111100)_2$$

$$E_b = [01111100]_{8\text{-bits}}$$

- Assembling the Final 32-bit Representation: (0.5 point)

We have the 3 fields in a 32-bits FP representation organized as follows:

Sing bit (1-bit) | Biased Exponent (8-bits) | Mantissa (23-bits)

Binary representation: $[1|011,1110,0000,0000,0000,0000,0000,0000]_{FP-32}$

In hexadecimal: $[BE000000]_{FP-32}$

- Decoding the following ASCII sequence using the ASCII table: (1 point)

$$[48\ 65\ 6C\ 6C\ 6F\ 20\ 32\ 30\ 32\ 36]_{ASCII}$$

48: H	65: e	6C: I	6C: I	6F: o
20: " "	32: 2	30: 0	32: 2	36: 6

Decoded sentence: "Hello 2026"

Exercise 4: (6 points)

- The Truth Table of the function F: (1 point)

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The SoP form of the Truth Table is: $F(A,B,C) = \bar{A}\bar{B}C + A\bar{B}C + A\bar{B}\bar{C} + ABC$ (1 point)

2. Karnaugh map method using SoP: (1 point)

		AB		C		00		01		11		10	
		0	1	0	1	0	1	1	0	1	1	0	1
		0	1	0	1	1	0	1	1	1	0	1	1
		1	0	0	1	1	0	1	1	1	0	1	1

The SoP reduction is: $F(A,B,C,D) = AB + BC + AC$ (1 point)

3. Quine-MacCluskey method:

1. Stage 1: (1 point)

Minterms	Pass 1
(3) 011✓	(3,7) -11 x
(5) 101✓	(5,7) 1-1 x
(6) 110✓	(6,7) 11- x
(7) 111✓	

Stage 2: (0.5 point)

Minterm Implicant	(3) 011	(5) 101	(6) 110	(7) 111
(3,7) -11	x			x
(5,7) 1-1		x		x
(6,7) 11-			x	x

$$EPI = \{(3,7) -11, (5,7) 1-1, (6,7) 11-\}$$

$EPI_{Minterm} = \{(3)011, (5)101, (6)110, (7)111\}$. all Minterms are covered.

The final result is $F(A,B,C) = BC + AC + AB$ (0.5 point)